МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКАЯ ХАРАКТЕРИСТИКА ВИРУСА БЕШЕНСТВА, ПАТОГЕНЕЗ И ДОСТИЖЕНИЯ В ДИАГНОСТИКЕ И РАЗРБОТКЕ СРЕДСТВ БОРЬБЫ

Авторы

  • Г.А. Баянды НАО Казахский национальный университет имени аль-Фараби, г. Алматы, Казахстан
  • Н.Н. Ахметсадыков НПП «Антиген»
  • A.K. Бисенбаев НАО Казахский национальный университет имени аль-Фараби, г. Алматы, Казахстан

DOI:

https://doi.org/10.26577/eb.2023.v95.i2.01

Ключевые слова:

вирус бешенства, гликопротеин G, антирабический иммуноглобулин.

Аннотация

Бешенство встречается во всем мире среди различных животных-резервуаров и, как известно, является самой смертельной вирусной инфекцией с почти 100% смертельным исходом после появления симптомов. Бешенство по-прежнему носит эндемический характер в более чем 150 странах и территориях, что приводит к ежегодным экономическим потерям на сумму около 8,6 млрд долларов США и продолжает уносить жизни примерно 40 000–70 000 человек в год, примерно 40% из которых - дети. Опасность бешенства заключается в том, что до сих пор не найдено эффективного лечения и заболевание обычно приводит к летальному исходу. Большинство этих смертей происходит в странах с ограниченными ресурсами, где отсутствие инфраструктуры препятствует своевременному оповещению и постконтактной профилактике, а повсеместное распространение домашних и диких животных-хозяев делает искоренение маловероятным. Проблема бешенства в Казахстане остается нерешенной, постоянно регистрируются природные очаги заболевания, что требует повышения эффективности мер профилактики и борьбы с бешенством. В этом обзоре основное внимание уделяется вопросам, связанными с молекулярно-генетической характеристикой вируса бешенства, патогенезом, а также распространением бешенства в мире и Казахстане. Подробно описаны результаты исследовании по разработке антирабических лекарственных препаратов и методов диагниостики.

Библиографические ссылки

Ahmad T, Musa T., Jin H. (2008) Rabies in Asian Countries: where we are stand? Biomed. Res. Ther., № 5,

pp. 2719-2720.

Aikimbayev A, Briggs D, Coltan G, Et Al. (2014) Fighting rabies in Eastern Europe, the Middle East and

Central Asia—Experts Call for A Regional Initiative for Rabies Elimination. Zoonoses Public Health., № 61, pp. 219–226.

Albertini A., Schoehn G, Weissenhorn W, Ruigrok R. (2008) Structural aspects of rabies virus replication.

Cell. Mol. Life Sci., № 65(2), pp. 282—294.

Bauer A., Nolden T., Nemitz S., Perlson E., Finke S. (2015) Dynein Light Chain 1 Binding motif in rabies virus

polymerase l protein plays a role in microtubule reorganization and viral primary transcription. Journal of Virology. № 89, pp. 9591–9600.

Beauregard M. (1965) The use of fluorescent antibody staining in the diagnosis of rabies. Can. J.Comp.Med.

Vet. Sci., vol. 29, no 6, pp. 141–147.

Ben Khalifa Y., Luco S., Besson B., Archambaud M., Grimes J., Larrous F., Bourhy H. (2016) The matrix protein

of rabies virus binds to RelAp43 to modulate NF-kappaB-dependent gene expression related to innate immunity. Scientific Reports. № 6(1), pp. 1-13.

Benmansour A., Leblois H., Coulon P., Tuffereau C., Gaudin Y., Flamand A., Lafay F. (1991) Antigenicity of

rabies virus glycoprotein. Journal of Virology. № 65, pp. 4198–4203.

Both L. Et Al. (2012) Passive immunity in the prevention of rabies. Lancet Infectious Disease, № 12(5), pp.

-407.

Botvinkin A., Poleschuk E., Kuzmin I., Borisova T., Gazarian S., Yager P., Rupprecht C. (2003) Novel

lyssavirus isolated from bat in Russia. Emerg Infect Dis., № 9(12), pp. 1623–1625.

Burrage T., Tignor G., Smith A. (1985) Rabies virus binding at neuromuscular junctions. Virus Research, №

, pp. 273–289.

Charlton K. M, Casey G. A. (1981) Experimental rabies in skunks: persistence of virus in denervated muscle

at the inoculation site. Can. J. Comp. Med., № 45, рр. 357–362.

Charlton K. M, Nadin-Davis S., Casey G.A., Wandeler A.I. (1997) The long incubation period in rabies:

delayed progression of infection in muscle at the site of exposure. Acta Neuropathol., № 94, pp. 73–77.

Davis B., Rall G. and Schnell M. (2015) Everything you always wanted to know about rabies virus (but were

afraid to ask). Annual review of virology, № 2(1), pp 451.

Dhulipala S. and Uversky V. (2022) Looking at the pathogenesis of the rabies lyssavirus strain pasteur vaccins

through a prism of the disorder-based bioinformatics. Biomolecules., № 12(10), pp. 1436.

Dietzschold B., Wiktor T.J., Macfarlan R., Varrichio A. (1982) Antigenic structure of rabies virus

glycoprotein: ordering and immunological characterization of the large cnbr cleavage fragments. J. Virol., Vol. 44, pp. 595–602.

Dodet B., Tejiokem M., Aguemon R., Bourhy H. (2014) Human rabies deaths in africa: breaking the cycle

of indifference. International Health, № 7(1), pp. 4–6.

El-Tholoth, M., El-Beskawy, M., Hamed M (2015) Identification and genetic characterization of rabies

virus from egyptian water buffaloes (bubalus bubalis) bitten by a fox. Virusdisease, № 26(3), pp. 141–146.

Embregts C., Begeman L., Voesenek C., Martina B., Koopmans M., Kuiken T., GeurtsvanKessel C. (2021)

Street RABV induces the cholinergic anti-inflammatory pathway in human monocyte-derived macrophages by binding to nAChr7. Front Immunollogy, № 12, 622516.

Etessami R., Conzelmann K., Fadai-Ghotbi B., Natelson B., Tsiang H., Ceccaldi P. (2000) And pathogenic

characteristics of a G-deficient rabies virus recombinant: An in vitro and in vivo study. Journal of Virology, № 8, рр. 2147–2153.

Faber M., Pulmanausahakul R., Hodawadekar S., Spitsin S., McGettigan J., Schnell M., Dietzschold B. (2002)

Overexpression of the rabies virus glycoprotein results in enhancement of apoptosis and antiviral immune response. Virology, № 76, рр. 3374–3381.

Finke S., Conzelmann K. (2003) Dissociation of rabies virus matrix protein functions in regulation of viral

rna synthesis and virus assembly. Journal of Virology, № 77, рр. 12074–12082.

Finke S., Conzelmann K. (2005) Replication strategies of rabies virus. virus, № 111(2), рр. 120—131.

Finke S., Granzow H., Hurst J., Pollin R., Mettenleiter T. (2010) Intergenotypic replacement of lyssavirus

matrix proteins demonstrate the role of lyssavirus m proteins in intracellular virus accumulation. Journal of Virology, № 84(4), рр. 1816–1827.

Fisher, C.R., Streicker, D.G. and Schnell, M.J. (2018) The spread and evolution of rabies virus: conquering

new frontiers Nature Reviews Microbiology, № 16(4), рр. 241-255.

Fooks A., Banyard A., Horton D. Et Al. (2014) Current status of rabies and prospects for elimination The

Lancet, № 384, рр. 1389-1399.

Fooks A.R, Banyard A.C., Ertl H.J. (2019) New human rabies vaccines in the pipeline. Vaccine, № 37, рр. 140–145.

Fooks, A. R., Cliquet, F., Finke, S., Freuling, C., Hemachudha, T., Mani, R. S., Banyard, A. C. (2017) Rabies. Nature Reviews Disease Primers, № 3, рр. 1-19.

Gongal G., Wright A. (2011) Human rabies in the who southeast asia region: forward steps for elimination. Advances in Preventive Medicine, рр. 1–5.

Graf W., Gerrits N., Yatim-Dhiba N., Ugolini G. (2002) Mapping the oculomotor system: the power of transneuronal labelling with rabies virus. Eur. J. Neurosci, № 15, рр. 1557–62.

Greene, C.E. Rabies and other lyssavirus infections (2012) rabies and other lyssavirus infections. Principles and Practice of Clinical Virology, № 4, рр. 631–660.

Hampson K., Coudeville L., Lembo T., Sambo M., Kieffer A., Attlan M. et al. (2015) Estimating the global burden of endemic canine rabies. Plos Negl. Trop. Dis., № 9(4), рр. 356-369

Hemachudha T., Laothamatas J., Rupprecht C. (2002) Human rabies: a disease of complex neuropathogenetic mechanisms and diagnostic challenges. The Lancet Neurology, № 1(2), рр. 101–109.

Hemachudha T., Vinken P., Bruyn G, Klawans H. (1989) Rabies. Handbook of Clinical Neurology, рр. 383–404.

Katz I., Dias M., Lima I., Chaves L., Ribeiro O., Scheffer K., Iwai L. (2017) Large protein as a potential target for use in rabies diagnostics. Acta Virol., № 61, рр. 280–288.

Kim P.K., Keum S.J., Osinubi M.O., Franka R., Shin J.Y., Park S.T., Kim M.S., Park M.J., Lee S.Y., Carson W., Greenberg L. (2017) Development and characterization of novel chimeric monoclonal antibodies for broad spectrum neutralization of rabies virus. Plos оne, № 12(10), e0186380.

Knobel D., Cleaveland S., Coleman P. Et Al. (2005) Reevaluating the burden of rabies in Africa and Asia. Bulletin of The World Health Organization, Vol. 83, No 5, рр. 360–368.

Lafon M, Wiktor TJ, Macfarlan RI. (1983) Antigenic sites on the CVS rabies virus glycoprotein: analysis with monoclonal antibodies. Journal of General Virology, № 64, рр. 843-851.

Lembo T. The Blueprint for rabies prevention and control: a novel operational toolkit for rabies elimination. Plos Negl Trop Dis., №;6 (2), рр. 325-338

Lentz T., Burrage T., Smith A., Crick J., Tignor (1982) Is the acetylcholine receptor a rabies virus receptor? Science, № 215, рр. 182–84.

Lewis P., Fu Y., Lentz T. (2000) Rabies virus entry at the neuromuscular junction in nerve-muscle cocultures. Muscle & Nerve, № 23, рр. 720–30.

Lojkić I., Šimić I., Bedeković T., Krešić, N. (2021) Current status of rabies and its eradication in Eastern and Southeastern Europe. Pathogens, № 10(6), рр. 742-750.

Marissen W.E., Kramer R.A., Rice A., Weldon W.C., Niezgoda M., Faber M., Slootstra J.W., Meloen, R.H., Clijsters-van der Horst M., Visser T., Jongeneelen, M. (2005) Novel rabies virus-neutralizing epitope recognized by human monoclonal antibody: fine mapping and escape mutant analysis. Journal of Virology, № 79(8), рр. 4672-4678.

Marston D., McElhinney L., Johnson N., Muller T., Conzelmann K., Tordo N., Fooks A. (2007) Comparative analysis of the full genome sequence of European bat lyssajmb virus type 1 and type 2 with other lyssaviruses and evidence for a conserved transcription termination and polyadenylation motif in the G-L 30 non-translated region. Gen. Virol., № 88, рр. 1302–1314.

Matouch O., Vitasek J., Semerad Z., Malena M. (2005) Elimination of rabies in the Czech Republic. First International Conference on Rabies in Europe, Kiev, Ukraine, Vol. 125, рр. 141-143.

Mcgettigan, J., David F., Figueiredo M., Minke J., Mebatsion T., Schnell M. (2014) Safety and serological response to a matrix gene-deleted rabies virus-based vaccine vector in dogs. Vaccine., № 32, рр. 1716–1719.

Morcuende S., Delgado-Garcia J., Ugolini G. (2002) Neuronal premotor networks involved in eyelid responses: retrograde transneuronal tracing with rabies virus from the orbicularis oculi muscle in the rat. Neuroscience, № 22, рр. 8808–18.

Morimoto K., Patel M., Corisdeo S., Et Al. (1996) Characterization of a unique variant of bat rabies virus responsible for newly emerging human cases in north america. Proc Natl Acad Sci USA, № 93, рр. 5653–5658.

Ogino T. аnd Banerjee A. (2007) Unconventional Mechanism of mRNA capping by the RNA-dependent RNA polymerase of vesicular stomatitis virus. Mol. Cell., № 25, рр. 85-97.

Perrin P. A (1986) Rapid rabies enzyme immuno-diagnosis (RREID): A useful and simple technique for the routine diagnosis of rabies. Journal of Biological Standardization, Vol. 14, Nо 3, рр. 217– 222.

Rathelot J.A., Strick P.L. (2006) Muscle representation in the macaque motor cortex: an anatomical perspective. PNAS, № 103, рр. 8257–62.

Sajjanar B., Dhusia K., Saxena S., Joshi V., Bisht D., Thakuria D., Manjunathareddy G., Ramteke P., Kumar S. (2017) Nicotinic acetylcholine receptor alpha 1(nAChR1) subunit peptides as potential antiviral agents against rabies virus. Biological Macromolecules, № 104, pp. 180–188.

Sasaki M.; Anindita P., Ito N., Sugiyama M., Carr M., Fukuhara H., Ose T., Maenaka K., Takada A., Hall W., et al. (2018) The role of heparan sulfate proteoglycans as an attachment factor for rabies virus entry and infection. The Journal of Infectious Diseases, № 217, рр.740–1749.

Schnell M., Mcgettigan J., Wirblich C., Papaneri A. (2009) The cell biology of rabies virus: using stealth to reach the brain. Nature Reviews Microbiology, № 8(1), рр. 51–61.

Schnell M., McGettigan J., Wirblich C., Papaneri A. (2010) The cell biology of rabies virus: using stealth to reach the brain. Nat. Rev. Microbiol., № 8, pp. 51–61.

Servat A, Cliquet F. (2015) Mouse potency testing of rabies vaccines. Cambridge (MA) Academic Press, № 2, рр. 269–279.

Shatalova A. V., Iakýbova A. S., Palımpsestov V. V., Esmagambetov I. B. (2019) Nanoantıtela: stroenıe, polýchenıe, prımenenıe (obzor). Razrabotka I Regıstratsııa Lekarstvennyh Sredstv., № 8(1), рр. 14-22.

Shmarov M. M., Tillib C. V., Týtyhına I. L., Rýtovskaıa M. V., Alekseeva S. V., Ivanova T. I (2018) Farmatsevtıcheskaıa kompozıtsııa dlıa passıvnoı ımmýnızatsıı protıv beshenstva, farmatsevtıcheskıı nabor, sposob prımenenııa farmatsevtıcheskogo nabora. Patent., № RU 2661028 C2.

Smith S.P., Wu G., Fooks A.R., Ma J. and Banyard A.C. (2019) Trying to treat the untreatable experimental approaches to clear rabies virus infection from the CNS. Journal of General Virology, № 100(8), рр. 1171-1186.

Sugiyama M., Ito N. (2007) Control of rabies: epidemiology of rabies in asia and development of new-generation vaccines for rabies. Comparative Immunology, Microbiology and Infectious Diseases, № 30(5-6), рр. 273–286.

Sultanov A.A., Abdrakhmanov S.K., Abdybekova A.M., Karatayev B.S., Torgerson P.R. (2016) Rabies in Kazakhstan. Plos Neglected Tropical Disease, № 10(8), е0004889.

Tao L., Ge J., Wang X., Wen Z., Zhai H., Hua T., Zhao B., Kong D., Yang C., Bu Z. (2011) Generation of a recombinant rabies Flury LEP virus carrying an additional G gene creates an improved seed virus for inactivated vaccine production. Virology, № 8, рр. 454.

Tian D., Luo Z., Zhou M., Li M., Yu L.,Wang C., Yuan J., Li F., Tian B., Sui, B.; et al. (2016) Critical Role of K1685 and K1829 in the large protein of rabies virus in viral pathogenicity and immune evasion. J. Virol., Vol. 90, рр. 232–244.

Tsiang H. (1993) Pathophysiology of rabies virus infection of the nervous system. Advances in Viruses Research, № 42, рр. 375–412.

Vigilato M., Cosivi O., Knöbl T., Clavijo A., Silva H. (2013) Rabies update for latin america and the caribbean. Emerging Infectious Diseases, № 19(4), рр. 678-679.

Wang J., Wang Z., Liu R., Shuai L., Wang X., Luo J., Wang C., Chen W., Wang X., Ge J., et al. (2018) Metabotropic glutamate receptor subtype 2 is a cellular receptor for rabies virus. PLoS Pathogens, № 14(7), e1007189.

Webster W.A. (1996) Virus isolation in neuroblastoma cell culture. laboratory techniques in rabies. Geneva, World Health Organization, рр. 96-103.

Wiktor T.J., Lerner R.A., Koprowski Н. (1971) Inhibitory effect of passive antibody on active immunity induced against rabies by vaccination. Bulliten World Health Organization, № 45(6), рр. 747- 753.

World Health Organization experts (2011) Expert consultation on Rabies. WHO Technical Report Series, № 931, рр. 221-324

Wunner W., Larson J., Dietzschold B., Smith C. (1988) The molecular biology of rabies viruses. Clinical Infectious Diseases, Vol.10(4), рр. 771–784.

Xiaoyue Ma., Ben P., Lillian A., Crystal M., Jordana D, Richard B, Christine F (2021) Rabies surveillance in the united states during 2019. Journal of The American Veterinary Medical Association, № 221(12), рр. 1690-1701.

Yin, J., Wang, X., Mao, R., Zhang, Z., Gao, X., Luo, Y., Sun, Y. and Yin, X. (2021) Research advances on the interactions between rabies virus structural proteins and host target cells: accrued knowledge from the application of reverse genetics systems. Viruses, №13(11), рр. 2288-2297.

Yousaf M., Qasim M., Zia S., Rehman Khan M., Ashfaq U., Khan, S. (2012) Rabies molecular virology, diagnosis, prevention and treatment. Virology Journal, №9(1), рр. 50-55.

Zandi F., Goshadrou F., Meyfour A., Vaziri B. (2021) Rabies infection: an overview of lyssavirus host protein interactions. Biomed., № 25, рр. 226-242.

Zhang Y, Zhou M., Li Y., Luo Zh., Chen H., Cui M., Fu Zh., Zhao L. (2018) Recombinant rabies virus with the glycoprotein fused with a DC-binding peptide is an efficacious rabies vaccine. Oncotarget, № 9, рр. 831-841.

Загрузки

Опубликован

2023-06-20