РАЗРАБОТКА НОВОГО ФУНКЦИОНАЛЬНОГО СИНБИОТИЧЕСКОГО КИСЛОМОЛОЧНОГО НАПИТКА НА ОСНОВЕ МОЛОЧНОЙ СЫВОРОТКИ
DOI:
https://doi.org/10.26577/eb.2021.v86.i1.06Ключевые слова:
молочная сыворотка, синбиотический функциональный напиток, антибактериальная активность, противогрибковая активность, растительные добавки, кобылье молоко, пробиотики, пребиотики.Аннотация
В течение последнего десятилетия подход потребителей к здоровому питанию резко изменился, и сегодня увеличению продолжительности жизни населения за счет потребления здоровой пищи придается особо важное значение. Общее ухудшение состояния здоровья населения, снижение сопротивляемости инфекциям, широкое распространение лекарственной резистентности патогенов требуют разработки оздоравливающих продуктов, предотвращающих развитие патогенных микроорганизмов и повышающих защитные силы организма. Молочные продукты занимают значительное место на рынке функциональных продуктов питания, а функциональные напитки на молочной основе являются растущим сегментом этого сектора.
В качестве закваски использована ассоциация молочнокислых бактерий Lactobacillus paracasei 4m-2b, Lactobacillus fermentum А15, уксуснокислых бактерий Acetobacter fabarium 4-4М, а также лактозосбраживающих дрожжей Kluyveromyces marxianus 4МА, обладающая антагонистической активностью в отношении грибковых и батериальных тестовых культур из родов Escherichia, Salmonella, Sarcina, Mycobacterium, Candida, Fusarium, Penicillium. В качестве пребиотической добавки использованы пшеничные отруби, содержащие в значительных количествах нерастворимые пищевые волокна.
Для улучения органолептических показателей, повышения биологических и питательных ценностей и для расширения спектра антагонистической активности микроорганизмов закваски, были использованы различные растительные добавки. Были получены варианты кисломолочных напитков с добавлением дрожжей и без дрожжей. Показана более высокая антагонистическая активность вариантов напитка, не включающих в состав закваски Kluyveromyces marxianus 4MA, в отношении Salmonella enterica Serotype Dublin. Однако подавление Candida albicans B514 было наиболее эффективным при отсутствии дрожжей в закваске. Отобран наилучший вариант синбиотического напитка с пшеничными отрубями на основе молочной сыворотки - с добавлением малины, пшена и кобыльего молока. Полученный кисломолочный напиток характеризуется высокими органолептическими показателями и широким спектром ингибирования роста бактериальных и грибковых тестовых культур.
Ключевые слова: молочная сыворотка, синбиотический функциональный напиток,антибактериальная активность, противогрибковая активность, растительные добавки, кобылье молоко, пробиотики, пребиотики.Библиографические ссылки
2 Hoppe C., Mølgaard C., Michaelsen K.F. Cow's milk and linear growth in industrialized and developing countries // Annu. Rev. Nutr. – 2006. – Vol. 26. – P. 131–173.
3 Malla M.A., Dubey A., Kumar A. Exploring the human microbiome: The potential future role of next-generation sequencing in disease diagnosis and treatment // Front Immunol. – 2019. Vol. 9:2868.
4 Ardatskaya M.D., Bel’mer S.V., Dobritsa V.P. Dysbiosis (dysbacteriosis) of the intestine: modern condition of the problem, complex diagnosis and therapeutic correction // Exp Clin Gastroenetrol. – 2015. Vol. 117. – P. 13–50.
5 Falony G., Joossens M., Viera-Silva S. Population-level analysis of gut microbiome variation
// Science. Vol. 352. – P. 560–564.
6 Zhernakova A., Kurilshikov A., Bonder M. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity // Science. – 2016. Vol. 352. – P. 565–569.
7 Proal A.D., Lindseth I.A., Marshall T.G. Microbe-microbe and host-microbe interactions drive microbiome dysbiosis and inflammatory processes // Discovery Med. – 2017. Vol. 23. – P. 51–60.
8 D’Argenio V. Human microbiome acquisition and bioinformatic challenges in metagenomic studies // Int J Mol Sci. – 2018. Vol. 19. – P. 383.
9 Conlon M.A., Bird A.R . The impact of diet and lifestyle on gut microbiota and human health // Nutrients. – 2014. Vol. 7. – P. 17–44.
10 Derrien M., Vlieg J.E. Fate, activity, and impact of ingested bacteria within the human gut microbiota // Trends Microbiol. – 2015. Vol. 23. – P. 354–366.
11 Mayer E.A., Tillisch K., Gupta A. Gut/brain axis and the microbiota // J. Clin. Investig. – 2015. Vol. 125. – P. 926–938.
12 Carabotti M., Scirocco A., Maselli M.A. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems // Ann Gastroenterol Q Publ Hell Soc Gastroenterol. – 2015. Vol. 28. – P. 203–209.
13 Fung T.C., Olson C.A., Hsiao E.Y. Interactions between the microbiota, immune and nervous systems in health and disease // Nat Neurosci 20. – 2017. – P. 145–155.
14 Powell N., Walker M.M., Talley N.J. The mucosal immune system: Master regulator of bidirectional gut-brain communications // Nat Rev Gastroenterol Hepatol. – 2017. Vol. 14. – P. 143–159.
15 Shenderov B.A., Sinitsa A.V., Zakharchenko M.M. Metabiotics: Yesterday, today, tomorrow (in Rus) // St. Petersburg: OOO “Kraft”, 80. – 2017.
16 de Castro F.P., Cunha T.M., Ogliari P.J., Teófilo R.F., Ferreira M.M.C., Prudêncio E.S. Influence of different content of cheese whey and oligofructose on the properties of fermented lactic beverages: Study using response surface methodology // Lebensm. Wiss. Technol. – 2009. Vol. 42. – P. 993-997.
17 Bulatović M.L., Rakin M.B., Mojović L.V., Nikolić S.B., Vukašinović Sekulić M.S., Đukić Vuković A.P. Improvement of production performance of functional fermented whey-based beverage // Chem. Ind. Chem. Eng. Q. - 2014. Vol. 20. – P. 1-8.
18 Kar T., Misra A.K. Therapeutic properties of whey used as fermented drink // Rev. Microbiol. - 1999. Vol. 30. – P. 163-169.
19 Hernandez-Mendoza A., Robles V.J., Angulo J.O., De La Cruz J., Garcia H.S. Preparation of a whey-based probiotic product with Lactobacillus reuteri and Bifidobacterium bifidum // Food Technol. Biotechnol. – 2007. Vol. 45. – P. 27-31.
20 Shah N.P. Functional cultures and health benefits // Int. Dairy J. – 2007. Vol. 17. - P. 1262-1277.
21 Pescuma M., Hébert E.M., Mozzi F., Font de Valdez G. Whey fermentation by thermophilic lactic acid bacteria: Evolution of carbohydrates and protein content // Food Microbiol. – 2008. Vol. 25. – P. 442-451.
22 Chavan R.S., Shraddha R.C., Kumar A., T. Nalawade. Whey based beverage: Its functionality, formulations, health benefits and applications. J. Food Process. Technol. – 2015. Vol. 10. – P. 1-8.
23 Hurtado-Romero A., Del Toro-Barbosa M., Garcia-Amezquita L.E., García-Cayuela T. Innovative technologies for the production of food ingredients with prebiotic potential: Modifications, applications, and validation methods // Trends in Food Science & Technology. – 2020. - Vol. 104. - P. 117-131.
24 Peredo-Lovillo A., Romero-Luna H.E., Jiménez-Fernández M. Health promoting microbial metabolites produced by gut microbiota after prebiotics metabolism // Food Research International – 2020. – Vol. 136. – 109473. doi: 10.1016/j.foodres.2020.109473
25 Shah B.R., Li B., Al Sabbah H., Xu W., Mráz J. Effects of prebiotic dietary fibers and probiotics on human health: With special focus on recent advancement in their encapsulated formulations // Trends in Food Science & Technology. – 2020. – Vol. 102. – P. 178-192.
26 De Paulo Farias D., de Araujo F.F., Neri-NumaI A., Pastore G.M. Prebiotics: Trends in food, health and technological applications // J Food Sci Technol. – 2019. – Vol. 93. – P. 23-35. doi: 10.1016/j.tifs.2019.09.004
27 Anderson J.W., Baird P., Davis R.H., Ferreri S., Knudtson M., Koraym A., Waters V.W., Williams C.L. Health benefits of dietary fiber // Nutr Rev. – 2009. – Vol. 67 (4). – P.188-205. doi: 10.1111/j.1753-4887.2009.00189.x
28 Ötles S., Ozgoz S. Health effects of dietary fiber. Acta Sci Pol Technol Aliment. 2014; 13(2):191-202. doi: 10.17306/J.AFS.2014.2.8
29 Notay M., Foolad N., Vaughn A.R., Sivamani R.K. Probiotics, prebiotics, and synbiotics for the treatmentand prevention of adult dermatological diseases // Am J Clin Dermatol. – 2017. – Vol. 18. – P. 721-732. doi: 10.1007/s40257-017-0300-2
30 Tian X., Pi Y., Liu X.L., Chen H., Chen W.Q. Supplemented use of pre-, pro-, and synbiotics in severe acute pancreatitis: An updated systematic review and meta-analysis of 13 randomized controlled trials // Front. Pharmacol. – 2018. – Vol. 9. – P. 1-13.doi: 10.3389/fphar.2018.00690
31 Davison K.M., Temple N.J. Cereal fiber, fruit fiber, and type 2 diabetes: Explaining the paradox // J Diabetes Complicat. - 2018. - Vol. 32(2). – P. 240-245. doi: 10.1016/j.jdiacomp.2017.11.002
32 Asto E., Mendez I., Audivert S., Farran-Codina A., Espadaler J. The efficacy of probiotics, prebiotic inulin-type fructans, and synbiotics in human ulcerative colitis: A systematic review and meta-analysis // Nutrients. – 2019. - Vol. 11. – P. 293. doi: 10.3390/nu11020293.
33 Higuchi M. Antioxidant Properties of Wheat Bran against Oxidative Stress. In: Wheat and Rice in Disease Prevention and Health. Benefits, risks and mechanisms of whole grains in health promotion // Academic Press. – 2014. – P.181-199.doi: 10.1016/B978-0-12-401716-0.00015-5
34 Mendis M., Leclerc E., Simsek S. Arabinoxylans, gut microbiota and immunity // Carbohyd Polym. – 2016. - Vol. 139(30). – P.159-166.doi: 10.1016/j.carbpol.2015.11.068
35 LeiLiu K.M, Winter L.S, Carol M., David N. Leach wheat bran lipophilic compounds with In Vitro anticancer effects // Food Chem. – 2012. - Vol. 130(1). – P. 156-164.doi: 10.1016/j.foodchem.2011.07.023
36 Sang S., Zhu Y. Chapter. 10-Bioactive Phytochemicals in Wheat Bran for Colon Cancer Prevention. In: Wheat and Rice in Disease Prevention and Health Benefits, Risks and Mechanisms of Whole Grains in Health Promotion // Academic Press. – 2014. – P. 121-129.
doi: 10.1016/B978-0-12-401716-0.00010-6
37 Aitzhanova A. A., Saubenova M. G., Munye J., Oleynikova E. A., Berzhanova R. J. (2019) Isolation of strains of microorganisms from Kazakh fermented milk products with antagonistic activity against yeast of the genus Candida.VestnikKazNU. Ser. Biological., vol. 2 (79), pp. 54-63.
38 Glanc S. (1998) Medico-biological statistics. Per. from the English.- Moscow: Praktika., pp.459.
39 Plemenkov V.V., Tevs O.A. Medical and biological properties and prospects of terpenoids (isoprenoids )//Chemistry of plant raw materials. - 2014. - No. 4. - S. 5-20
40 Behuria H.G., Sahu S.K. An Anti-microbial Terpenoid Fraction from Gymnema sylvestre Induces Flip-flop of Fluorescent-Phospholipid Analogs in Model Membrane // Applied Biochemistry and Biotechnology. – 2020. DOI: 10.1007/s12010-020-03399-3
41 Yashin A.Ya., Vedenin A.N., Yashin Ya.I., Nemzer B.V. Antioxidant activity of spices and their impact on human health//Sorption and chromatographic processes. - 2017. - Т.17, No. 6. - S. 954-969.
42 Gomaa A.A., Makboul R.M., El-Mokhtar M.A., Abdel-Rahman E.A., Ahmed I.A., Nicola M.A. Terpenoid-rich Elettaria cardamomum extract prevents Alzheimer-like alterations induced in diabetic rats via inhibition of GSK3β activity, oxidative stress and pro-inflammatory cytokines // Cytokine. – 2019. – Vol. 113. – P. 405-416.
43 Ashokkumar K., Murugan M., Dhanya M.K., Warkentin T.D. Botany, traditional uses, phytochemistry and biological activities of cardamom [Elettaria cardamomum (L.) Maton] – A critical review // Journal of Ethnopharmacology. – 2020. – Vol. 246. – Art. No. 112244. DOI: 10.1016/j.jep.2019.112244
44 Kandikattu H.K., Rachitha P., Jayashree G.V., Krupashree K., Sukhith M., Majid A., Amruta N., Khanum F. Anti-inflammatory and anti-oxidant effects of Cardamom (Elettaria repens (Sonn.) Baill) and its phytochemical analysis by 4D GCXGC TOF-MS // Biomedicine & Pharmacotherapy. – 2017. – Vol. 91. – P. 191-201.
45 Souissi M., Azelmat J., Chaieb K., Grenier D. Antibacterial and anti-inflammatory activities of cardamom (Elettaria cardamomum) extracts: Potential therapeutic benefits for periodontal infections // Anaerobe. – 2020. – Vol. 61. – Art. No. 102089. DOI: 10.1016/j.anaerobe.2019.102089
46 Peeyush kumar, Ramteke P.W., Pandey A.C., Pandey H. Evaluation of antifungal activity of blended cinnamon oil and usnic acid nanoemulsion using candidiasis and dermatophytosis models // Biocatalysis and Agricultural Biotechnology. – 2019. – Vol. 18. – Art. No. 101062. DOI: 10.1016/j.bcab.2019.101062
47 El amrani S., El Ouali Lalami A., Ez zoubi Y., Moukhafi K., Bouslamti R., Lairini S. Evaluation of antibacterial and antioxidant effects of cinnamon and clove essential oils from Madagascar // Materials Today Proceedings. – 2019. – Vol. 13, Part 3. – P. 762-770.
48 Paudel S.K., Bhargava K., Kotturi H. Antimicrobial activity of cinnamon oil nanoemulsion against Listeria monocytogenes and Salmonella spp. on melons // LWT. – 2019. – Vol. 111. – P. 682-687.
49 Muhialdin B.J., Kadum H., Fathallah S., Hussin A.S.M. Metabolomics profiling and antibacterial activity of fermented ginger paste extends the shelf life of chicken meat // LWT. – 2020. – Vol. 132. – Art. No. 109897. https://doi.org/10.1016/j.lwt.2020.109897
50 Faria T.R.B., Furletti-Goes V.F., Franzini C.M., Aparecidade Aro A., Andrade T.A.M., Sartoratto A., Menezes C.C. Anti-inflammatory and antimicrobial effects of Zingiber officinale mouthwash on patients with fixed orthodontic appliances // American Journal of Orthodontics and Dentofacial Orthopedics. – 2020. DOI: 10.1016/j.ajodo.2019.10.025
51 Nieto G., Ros G., Castillo J. Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis, L.): A Review // Medicines (Basel). – 2018. – Vol. 5(3). – P. 98. DOI: 10.3390/medicines5030098
52 Esmael A., Hassan M.G., Amer M.M., Abdelrahman S., Hamed A.M., Abd-raboh H.A., Foda M.F. Antimicrobial activity of certain natural-based plant oils against the antibiotic-resistant acne bacteria // Saudi Journal of Biological Sciences. – 2020. - Vol. 27, Issue 1. – P. 448-455.
53 Ceylan Z., Meral R., Kose S., Sengor G., Akinay Y., Durmus M., Ucar Y. Characterized nano-size curcumin and rosemary oil for the limitation microbial spoilage of rainbow trout fillets // LWT. – 2020. – Vol. 134. – Art. No. 109965. https://doi.org/10.1016/j.lwt.2020.109965
54 Nikitina V.S., Kuzmina L.Yu., Melentiev A.I., Shendel G.V. Antibacterial activity of polyphenol compounds isolated from plants of the Geraniaceae and Rosaceae families//Applied biochemistry and microbiology. - 2007. - T. 43 (6). - S. 705-712
55 Markiewicz-Kęszycka M., Wójtowski J., Kuczyńska B., Puppel K., Czyżak-Runowska G., Bagnicka E., Strzałkowska N., Jóźwik A., Krzyżewski J. Chemical composition and whey protein fraction of late lactation mares’ milk, International Dairy Journal, 2013, vol. 31, pp. 62-64.
56 Konuspayeva G., Serikbayeva A., Loiseau G., Narmuratova M., Faye B. Lactoferrin of camel milk of Kazakhstan // Desertification combat and food safety: the added value of camel producers: proceedings of the NATO advanced research workshop, 19-21 April 2004, Ashgabad, Turkmenistan. – Amsterdam: IOS Press, 2015. – P. 158-167.
57 Izadi A., Khedmat L., Mojtahedi S.Y. Nutritional and therapeutic perspectives of camel milk and its protein hydrolysates: A review on versatile biofunctional properties // Journal of Functional Foods. – 2019. – Vol. 60. – Art. No. 103441. DOI: 10.1016/j.jff.2019.103441
58 Kushugulova A., Kozhakhmetov S., Sattybayeva R., Nurgozhina A., Ziyat A., Yadav H., Marotta F. Mare's milk as a prospective functional product // Functional Foods in Health and Disease. – 2018. – Vol. 8(11). – P. 548-554.