САЗАН БАҒЫЛЫҒЫНЫҢ (CYPRINUS CARPIO) ІШЕК МИКРОФЛОРАСЫНА АУЫР МЕТАЛДАРДЫҢ ӘСЕРІ
DOI:
https://doi.org/10.26577/eb.2022.v92.i3.01Кілттік сөздер:
сазан, ауыр металдар, резистенттілік, ішек микрофлорасы, метагеномикаАннотация
Тұщы сулардың ауыр металдармен ластануы көптеген елдерде, соның ішінде Қзақастанда да өте өзекті мәселе. Өндірістің қарқынды дамуы ауыр металдармен ластанудың басты көзі болып саналады. Ішек микрофлорасы балықтардың гомеостазында, иммундық жүйесін реттеуде, зат алмасу үдерісінде және ауруларға төзімділігінде маңызды қызмет атқарғандықтан, ауыр металдардың балықтардың ішек микрофлорасының алуантүрлілігіне әсерін зерттеу өте қажет. 16S рДНҚ генінің гиперөзгермелі аймақтары негізінде жүзеге асырылатын метагеномика әдісі зерттеушілерге ішек микрофлорасы геномын секвенирлеуге мүмкіндік береді. Нәтижесінде дәстүрлі микробиологиялық әдістер арқылы анықталынбайтын микроағзалардың тізімін анықтауға болады. Қарапайым тұқы немесе сазан былығы (Cyprinus carpio) ауыр металдармен қатты ластанған тұщы суларда өте төзімді және тұщы сулардың ластануының биоиндикаторы болып саналады. Сондықтан осы мақаланың мақсаты сазан балығы ішек микрофлорасының алуантүрлілігіне ауыр металдардың әсеріне шолу жасау. Табиғи ортадағы сазан балығы микрофлорасының алуантүрлілігі мен әртүрлі қоршаған орта факторлары арасындағы қарым-қатынасы туралы біздің білімімізді толықтыруға алып келетін бағыт талқыланады. Сонымен қатар, ауыр металдардың улылығына сазанның төзімділігіне оң әсер ететін бактериялар түрлерін білу өте маңызды.
Библиографиялық сілтемелер
Oves M., Saghir K.M., Huda Q.A., Nadeen F.M., Almeelbi T. (2016) Heavy metals: biological importance and detoxification strategies. J Bioremed Biodeg., vol. 7, no. 2. http://dx.doi.org/10.4172/2155-6199.1000312
Garbarino J.R., Hayes H.C., Roth D.A., Antweiler R.C., et al. (1995) Contaminants in the Mississippi River: Heavy metals in the Mississippi River. Reston, Virginia: U.S. GEOLOGICAL SURVEY CIRCULAR. no. 1133. Available from https://pubs.usgs.gov/circ/1995/circ1133/heavy-metals.html [accessed 01 October 1996]
Lovinskaya A., Kolumbayeva S., Begimbetova D., Suvorova M., Bekmagambetova N., Abilev S. (2021) Toxic and genotoxic activity of river waters of the Kazakhstan. Acta Ecologica Sinica, vol. 41, no. 6, pp. 499-511 https://doi.org/10.1016/j.chnaes.2021.01.011
Masindi V., Muedi L.K. (2018) Environmental contamination by heavy metals. Intech. Available from https://www.intechopen.com/books/heavy-metals/environmental-contamination-by-heavy-metals [accessed 27 June 2018]
Dai J., Zhang L., Du X., Zhang P., Li W., Guo X., Li Y. (2018) Effect of lead on antioxidant ability and immune responses of crucian. Biological Trace Element Research, vol. 186, pp. 546-553. https://doi.org/10.1007/s12011-018-1316-z)
Ayan S., Sarsekova D., Kenesaryuly G., Yilmaz E., Gülseven O., Şahin İ. (2021) Accumulation of heavy metal pollution caused by traffic in forest trees in the park of Kerey and Janibek Khans of the city of Nur-Sultan, Kazakhstan. J. For. Sci., vol. 67, pp. 357–366. https://doi.org/10.17221/37/2021-JFS
Kakade A., Salama E., Pengya F., Lui P., Li X. (2020) Long-term exposure of high concentration heavy metals induced toxicity, fatality, and gut microbial dysbiosis in common carp, Cyprinus carpio. Environmental Pollution. vol. 266, pp. 1-10. https://doi.org/10.1016/j.envpol.2020.115293
Eichmiller J.J., Hamilton M.J., Staley Ch., Sadowsky M.J., Sorensen, P.W. (2016) Environment shapes the fecal microbiome of invasive carp species. Microbiome, vol. 4, no. 44. https://doi.org/10.1186/s40168-016-0190-1
Tyagi A., Singh B., Billekallu Thammegowda N.K. (2019) Shotgun metagenomics offers novel insights into taxonomic compositions, metabolic pathways and antibiotic resistance genes in fish gut microbiome. Arch Microbiol, vol. 201, pp. 295–303. https://doi.org/10.1007/s00203-018-1615-y
Degregori S., Casey J.M., Barber P.H. (2021) Nutrient pollution alters the gut microbiome of a territorial reef fish. Marine Pollution Bulletin, vol. 169, https://doi.org/10.1016/j.marpolbul.2021.112522
Handelsman S. (2004) Metagenomics: Application of genomics to uncultured microorganisms. Microbiology and Molecular Biology Reviewers, vol. 4, no. 68, pp. 669-685. doi:10.1128/MMBR.68.4.669-685.2004
Legrand T.P.R.A., Wynne J.W., Weyrich L.S., Oxley A.P.A. (2020) A microbial sea of possibilities: current knowledge and prospects for an improved understanding of the fish microbiome. Reviews in Aquaculture, vol. 12. 1101-1134. DOI 10.1111/raq.12375
Nugrahi T.N.U., Mulyani Y., Agung M.U.K., Iskandar. (2021) Community structure of Common carp (Cyprinus carpio Linnaeus, 1758) gut bacteria in the Cirata Reservoir, West Java Province, Indonesia. World Scientific News, vol. 161, pp. 130-142.
Tarnecki A.M., Burgos F.A., Ray C.L., Arias C.R. (2017) Fish intestinal microbiome: diversity and symbiosis unravelled by metagenomics. J Appl Microbiol., vol. 123, no. 1, pp. 2-17. https://doi.org/10.1111/jam.13415
van de Peer Y., Chapelle,S., de Wachter, R. (1996) A quantitative map of nucleotide substitution rates in bacterial rRNA. Nucleic Acids Research, vol. 17, no. 24, pp. 3381-3391. https://doi.org/10.1093/nar/24.17.3381
Wu S., Wang G., Angert E.R., Wang W., Li W., Zou H. (2012) Composition, Diversity, and Origin of the Bacterial Community in Grass Carp Intestine. PLoS ONE, vol. 7, no. 2, e30440. https://doi.org/10.1371/journal.pone.0030440
Martin A.A. (2002) Phylogenetic approaches for describing and comparing the diversity of microbial communities. Applied and environmental microbiology, vol. 8, no. 68, pp. 3673-3682. DOI: 10.1128/AEM.68.8.3673–3682.2002
Kroes I., Lepp P.W., Relman D.A. (1999) Bacterial diversity within the human subgingival crevice. PNAS., vol. 25, pp. 14547-14552. https://doi.org/10.1073/pnas.96.25.14547
McCaig A.A., Glover L.A., Prosser J.I. (1999) Molecular analysis of bacterial community structure and pastures diversity in unimproved and improved upland grass. Applied and environmental microbiology. vol. 4, no. 65, pp. 1722-1730.
Ye L., Amberg J., Chapman D., Gaikowski M., Liu W. (2014) Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish. ISME J., vol. 8, no. 3, pp. 541-551. 10.1038/ismej.2013.181 (doi.org)
Malekpouri P., Peyghan R., Mahboobi-Soofiani N., Mohammadian, B. (2016) Metabolic capacities of common carp (Cyprinus carpio) following combined exposure to copper and environmental hypoxia. Ecotoxicology and Environmental Safety. vol. 127, pp. 1-11. https://doi.org/10.1016/j.ecoenv.2016.01.004
Chang X., Li H., Feng J., Chen Y., et al. (2019) Effects of cadmium exposure on the composition and diversity of the intestinal microbial community common carp (Cyprinus carpio). Ecotoxicology and Environmental Safety, vol. 171, pp. 92-98. https://doi.org/10.1016/j.ecoenv.2018.12.066
Meng X., Li Sh., Qin C., Zhu Zh., et al. (2018) Intestinal microbiota and lipid metabolism responses in the common carp (Cyprinus carpio L.) following copper exposure. Ecotoxicology and Environmental Safety, vol. 160, pp. 257-264. https://doi.org/10.1016/j.ecoenv.2018.05.050
Chang X., Kang M., Shen Y., Yun L., et al. (2021) Bacillus coagulans SCC-19 maintains intestinal health in cadmium-exposed common carp (Cyprinus carpio L.) by strengthening the gut barriers, relieving oxidative stress and modulating the intestinal microflora. Ecotoxicology and Environmental Safety, vol. 228. https://doi.org/10.1016/j.ecoenv.2021.112977
Chupani L., Barta J., Zuskova, E. (2019) Effects of food-borne ZnO nanoparticles on intestinal microbiota of common carp (Cyprinus carpio L.). Environmental Science and Pollution Research. vol. 6, pp. 25869-25873. https://doi.org/10.1007/s11356-019-05616-x
Han Zh., Sun J., Lv A., Wang, A. (2019) Biases from different DNA extraction methods in intestine microbiome research based on 16S rDNA sequencing: a case in the koi carp, Cyprinus carpio var. Koi. MicrobiologyOpen, vol . 626, pp. 1-9. https://doi.org/10.1002/mbo3.626