Physiological and biochemical changes in chickpea seedlings during acclimatization to low temperatures in the laboratory conditions

Authors

  • K. Bulatova Kazakh scientific research institute of farming and plant growth, Kazakhstan, Almaty region, Almalybak
  • Sh. Mazkirat Kazakh scientific research institute of farming and plant growth, Kazakhstan, Almaty region, Almalybak
  • M. Kudaibergenov Kazakh scientific research institute of farming and plant growth, Kazakhstan, Almaty region, Almalybak
  • K. Baitarakova Kazakh scientific research institute of farming and plant growth, Kazakhstan, Almaty region, Almalybak
        79 66

Keywords:

chickpea, cold resistance, acclimatization, proline, sucrose, photosynthetic pigments, superoxide dismutase, peroxidase.

Abstract

In this article represented the results of physiological and biochemical changes in 4 samples of chickpea seedlings at the stages of two variants’ cold acclimation under laboratory conditions.

It was found that osmoprotectants: The free proline and sucrose increased as the lengthening and intensifying of the stress factors in all genotypes except for Malhotra variety.

 The informativeness of the biochemical parameters associated with overwintering was manifested during the period of temperature decrease from +13 to +2 оС. Thus, there were high positive correlations between accumulation of sucrose and the concentration of photosynthetic pigments, carotenoids (chlorophyll a, b, xanthophyll + carotenoids) in seedlings and overwintering level of chickpea in the field conditions (r = 0.98, 0.98, 0.91, respectively).

At all stages of the 2nd variant in cold acclimation, the general activity of antioxidant enzymes (peroxidase, superoxide dismutase) was positively correlated with the level of sucrose and free proline in plants. When stress treatment was strengthened in plants, the relationship between peroxidase activity and the number of overwintered plants was revealed.

Author Biographies

K. Bulatova, Kazakh scientific research institute of farming and plant growth, Kazakhstan, Almaty region, Almalybak

Bulatova Kulpash doctor of biological sciences, associated professor, head of  the  laboratory of  molecular and biological analysis of plant

 

Sh. Mazkirat, Kazakh scientific research institute of farming and plant growth, Kazakhstan, Almaty region, Almalybak

Mazkirat Shynar magister, scientific worker of the  laboratory of molecular and biological analysis of plant

M. Kudaibergenov, Kazakh scientific research institute of farming and plant growth, Kazakhstan, Almaty region, Almalybak

Kudaibergenov Mukhtar doctor of biological sciences, associated professor, head of  the department of legumes

K. Baitarakova, Kazakh scientific research institute of farming and plant growth, Kazakhstan, Almaty region, Almalybak

Baitarakova Kuralay senior scientific worker of the department of legumes

References

1 Singh K.B., Ocamp O.B., Exploitation of wild Cicer species for yield improvement in chickpea // Theoretical and Applied Genetics. – 1997. – V. 95. – P. 418-423.
2 Croser J.S., Clarke H.J., Siddique K.H.M., Khan T.N. Low Temperature Stress: Implications for Chickpea (Cicer arietinum L.) Improvement // Critical Reviews in Plant Sciences. – 2003. – V. 22. – P. 185–219.
3 Singh K.B., Malhotra R.S., Saxena M.C. Relationship between cold severity and yield loss in chickpea. (Cicer arietinum L.) // Journal of Agronomy. – 1993. – V. 170. – P. 121-127.
4 Hughes M.A., Dunn M.A. The effect of temperature on plant growth and development // Biotech. Genet. – 1990. – V. 8. – P. 161–188.
5 Hughes M.A., Dunn M.A. The molecular biology of plant acclimation to low temperature // J. Exp. Bot. – 1996. – V. 47. – P. 291–305.
6 Chohan A., Raina S.K. Comparative studies on morphological and biochemical characters of chickpea genotypes under chilling stress // J. Environ. Biol. – 2011. – V. 32. – P. 189-194.
7 Tatar O., Ozalkan C., Atasoy G.D. Partitioning of dry matter, proline accumulation, chlorophyll content and antioxidant activity of chickpea (Cicer arietinum L.) plants under chilling stress // Journal of Agricultural Science. – 2013. – V. 19. – P. 260-265.
8 Turan Ö., Ekmekci Y. Chilling tolerance of Cicer arietinum lines evaluated byphotosystem II and antioxidant activities // Turkish Journal of Botany. – 2014. – V. 38. – P. 499-510.
9 Maller P.R., Mckay K.N., Jenks B.A. Growing chickpea in the northern great plains // Montana State University Press. – 2002. – V. 47. P. 1-8.
10 Saghfi S., Eivazi A.R. Effect of cold stress on proline and soluble carbohydrates accumulation in two chikpea cultivars // J.Curr. Microbiol. Appl. Sci. – 2014. – V. 32. – P. 591-595.
11 Nayyar H., Chander K., Kumar S., Bains T. Glycine betaine mitigates cold stress damage in Chickpea Agron. Sustain. Dev. – 2005. – V. 25. – P. 381–388.
12 Kaur S., Arora M., Gupta A.K., Kaur N. Exploration of biochemical and molecular diversity in chickpea seeds to categorize cold stress-tolerant and susceptible genotypes // Acta Physiol Plant. – 2012. – V. 34. – P. 569–580.
13 Wellburn A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution // J. of Plant Physiology. – 1994. – V. 144. – P. 307–313.
14 Bates L.D., Waldren R.P., Teare I.D. Rapid determination of free praline for water – stress studies // Plant and Soil. – 1973. – V. 39. – P. 2005-2007.
15 Dubois M., Gilles K.A., Hamilton J.K., Rebers P.A., Smoth F. Colorimetric Method for determination of Sugars and related Substances // Analytical Chemistry. – 1956. – V. 28. – P. 350-356.
16 Mohammad R.A., Majid M. Antioxidative and biochemical responses of wheat to drought stress // Journal of Agricultural and Biological Science. – 2013. – V. 8. – P. 291-301.
17 Beauchamp C., Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels // Anal Biochem. – 1971. – V. 44. – P. 276-287.
18 Бояркин, А.Н. Быстрый метод определения активности пероксидазы // Биохимия. – 1951. – Т. 16, вып. 4. – С. 352-355.
19 Szabados L., Savoure A. Proline: a multifunctional amino acid // Trends Plant Sciences. – 2010. – V. 15. – P. 89-97.
20 Janmohammadi M. Metabolic analysis of low temperature responses in plants // Current Opinion in Agriculture. – 2006. – V. 1. – P. 1-6.
21 Petcu E, Perbea M., Dupa Z., Ionescu D. Study on the relationship between frost resistance and free proline content in some winter wheat and barley genotypes // Romanian agricultural science. – 2010. – V. 13-14. – P. 37-41.
22 Nazari M.R., Maali M.R., Mehraban F.H., Khaneghah H.Z. Change in Antioxidant Responses against Oxidative Damage in Black Chickpea Following Cold Acclimation // Russian Journal of Plant Physiology. – 2012. – V. 59. – P. 183-189.
23 Janska A., Zelenkova S., Klima M., Vyvadilova M., Prasil I.T. Freezing tolerance and proline content of in vitro selected hydroxiproline resistant winter oilseed rape // Chech J.genet.plant Breed. – 2010. – V. 46. – P. 35-40.
24 Klima M., Vitamvas P., Zelenkova S., Vyvadilova M., Prasil I.T. Dehydrin and proline content in Brassica napus and B.carinata under cold stress at two irradiances // Biologia Plantarum. – 2012. – V. 56. – P. 157-161.
25 Rolland F., Baena-Gonzalez E., Sheen J. Sugar sensing and signaling in plants: conserved and novel mechanisms // Annu Rev Plant Biol. – 2006. – V. 57. – P. 675–709.
26 Ruan Y.L. Sucrose metabolism: gateway to diverse carbon use and sugar signaling // Annu Rev Plant Biol. – 2014. – V. 65. – P. 33–67.
27 Yuanyuan M., Yali Z., Jiang L., Hongbo S. Roles of plant soluble sugars and their responses to plant cold stress // African journal of Biotechnology. – 2009. – V. 8. – P. 145-153.
28 Janmohammadi M. Study of interrelationship between vegetative/reproductive transition stage and cold induced proteins expression using proteomics analysis in wheat grown under field conditions (Ph.D. Thesis). – гniversity of Tehran. – 2010, 236 рр.
29 Ishikawa T., Takahara K., Hirabayashi T., Matsumura H., Fujisawa S., Terauchi R. Metabolome analysis of response to oxidative stress in rice suspension cells overexpressing cell death suppressor Bax inhibitor-1 // Plant Cell Physiol. – 2010. – V. 51(1). – P. 9-20.
30 Huseynova I.M. Photosynthetic characteristics and enzymatic antioxidant capacity of leaves from wheat cultivars exposed to drought // Biochim Biophys Acta. – 2012. – V. 8. – P. 1516-1523.
31 Mantri N.L, Ford R., Coram T.E., Pang E.C. Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought // BMC Genomics. – 2007. – V. 8. – P. 303-316.
32 Yadav S.S., Kumar J., Yadav S.K., Singh S., Yadav V.S., Turner N.C., Redden R. Evaluation of Helicoverpa and drought resistance in desi and kabuli chickpea // Plant. Genet. Res. – 2006. – V. 4. – P. 198–203.


References

1 Singh K.B., Ocamp O.B. “Exploitation of wild Cicer species for yield improvement in chickpea” Theoretical and Applied Genetics 95 (1997): 418-423. DOI: https://doi.org/10.1007/s001220050
2 Croser J.S., Clarke H.J., Siddique K.H.M., Khan T.N. “Low Temperature Stress: Implications for Chickpea (Cicer arietinum L.) Improvement” Critical Reviews in Plant Sciences 22 (2003): 185–219. DOI: http://dx.doi.org/10.1080/713610855
3 Singh K.B., Malhotra R.S., Saxena M.C. “Relationship between cold severity and yield loss in chickpea. (Cicer arietinum L.)” Journal of Agronomy 170 (1993): 121-127. DOI: 10.1111/j.1439-037X.1993.tb01065.x
4 Hughes M.A., Dunn M.A. “The effect of temperature on plant growth and development” Biotech. Genet. 8 (1990): 161–188.
5 Hughes M.A., Dunn M.A. “The molecular biology of plant acclimation to low temperature” J. Exp. Bot. 47 (1996): 291–305. DOI: http://dx.doi.org/10.1080/02648725.1990.10647868
6 Chohan A., Raina S.K. “Comparative studies on morphological and biochemical characters of chickpea genotypes under chilling stress” J. Environ. Biol. 32 (2011): 189-194. ISSN: 0254-8704
7 Tatar O., Ozalkan C., Atasoy G.D. “Partitioning of dry matter, proline accumulation, chlorophyll content and antioxidant activity of chickpea (Cicer arietinum L.) plants under chilling stress” Journal of Agricultural Science. 19 (2013): 260-265.
8 Turan Ö., Ekmekci Y. “Chilling tolerance of Cicer arietinum lines evaluated byphotosystem II and antioxidant activities” Turkish Journal of Botany 38 (2014): 499-510. DOI:10.3906/bot-1309-7
9 Maller P.R, Mckay K.N, Jenks BA. “Growing chickpea in the northern great plains” Montana State University Press. 47 (2002): 1.
10 Saghfi S., Eivazi A.R. “Effect of cold stress on proline and soluble carbohydrates accumulation in two chikpea cultivars” J.Curr. Microbiol. Appl. Sci 32 (2014): 591-595. ISSN: 2319-7706
11 Nayyar H., Chander K., Kumar S., Bains T. “Glycine betaine mitigates cold stress damage in Chickpea” Agron. Sustain. Dev. 25 (2005): 381–388. DOI: 10.1051/agro:2005033
12 Kaur S., Arora M., Gupta A.K., Kaur N. “Exploration of biochemical and molecular diversity in chickpea seeds to categorize cold stress-tolerant and susceptible genotypes” Acta Physiol Plant 34 (2012): 569–580. DOI 10.1007/s11738-011-0856-z
13 Wellburn A.R. “The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution” J. of Plant Physiology. 144 (1994): 307–313. DOI: https://doi.org/10.1016/S0176-1617(11)81192-2
14 Bates L.D., Waldren R.P., Teare I.D. “Rapid determination of free praline for water – stress studies” Plant and Soil. 39 (1973): 2005-2007. DOI: 10.1007/BF00018060
15 Dubois M., Gilles K.A., Hamilton J.K., Rebers P.A., Smoth F. “Colorimetric Method for determination of Sugars and related Substances” Analytical Chemistry. 28 (1956): 350-356. DOI: 10.1021/ac60111a017
16 Mohammad R.A., Majid M. “Antioxidative and biochemical responses of wheat to drought stress” Journal of Agricultural and Biological Science. 8 (2013): 291-301. ISSN: 1990-6145
17 Beauchamp C., Fridovich I. “Superoxide dismutase: improved assays and an assay applicable to acrylamide gels” Anal Biochem 44 (1971): 276-287. DOI: https://doi.org/10.1016/0003-2697(71)90370-8
18 Boiarkin, A.N. “Bystryi metod opredeleniia aktivnosti peroksidazy” Biokhimiia. 16 (1951): 352-355. (In Russian).
19 Szabados L., Savoure A. “Proline: a multifunctional amino acid” Trends Plant Sciences. 15 (2010): 89-97. DOI: 10.1016/j.tplants.2009.11.009
20 Janmohammadi M. “Metabolic analysis of low temperature responses in plants” Current Opinion in Agriculture. 1 (2012): 1-6.
21 Petcu E, Perbea M., Dupa Z., Ionescu D. “Study on the relationship between frost resistance and free proline content in some winter wheat and barley genotypes” Romanian agricultural science 13-14 (2010): 37-41.
22 Nazari M.R., Maali Amiri M.R., Mehraban F.H., Khaneghah H.Z. “Change in Antioxidant Responses against Oxidative Damage in Black Chickpea Following Cold Acclimation” Russian Journal of Plant Physiology 59 (2012): 183-189. ISSN: 1021_4437
23 Janska A., Zelenkova S., Klima M., Vyvadilova M., Prasil I.T. “Freezing tolerance and proline content of in vitro selected hydroxiproline resistant winter oilseed rape” Chech J.genet.plant Breed. 46 (2010): 35-40. ISSN : 1212-1975
24 Klima M., Vitamvas P., Zelenkova S., Vyvadilova M., Prasil I.T. “Dehydrin and proline content in Brassica napus and B.carinata under cold stress at two irradiances” Biologia Plantarum. 56 (2012): 157-161. ISSN : 0006-3134
25 Rolland F., Baena-Gonzalez E., Sheen J. “Sugar sensing and signaling in plants: conserved and novel mechanisms” Annu Rev Plant Biol 57 (2006): 675–709. DOI: 10.1146/annurev.arplant.57.032905.105441
26 Ruan Y.L. “Sucrose metabolism: gateway to diverse carbon use and sugar signaling” Annu Rev Plant Biol. 65 (2014): 33–67. DOI: 10.1146/annurev-arplant-050213-040251
27 Yuanyuan M., Yali Z., Jiang L., Hongbo S. “Roles of plant soluble sugars and their responses to plant cold stress” African journal of Biotechnology. 8 (2009): 145-153. ISSN: 1684–5315
28 Janmohammadi M. “Study of interrelationship between vegetative/reproductive transition stage and cold induced proteins expression using proteomics analysis in wheat grown under field conditions” (Ph.D. Thesis., University of Tehran, 2010).
29 Ishikawa T., Takahara K., Hirabayashi T., Matsumura H., Fujisawa S., Terauchi R. “ Metabolome analysis of response to oxidative stress in rice suspension cells overexpressing cell death suppressor Bax inhibitor-1” Plant Cell Physiol. 51(1) (2010): 9-20. DOI: 10.1093/pcp/pcp162
30 Huseynova I.M. “Photosynthetic characteristics and enzymatic antioxidant capacity of leaves from wheat cultivars exposed to drought” Biochim Biophys Acta. 8 ( 2012): 1516-1523. DOI: 10.1016/j.bbabio.2012.02.037
31 Mantri N.L., Ford R., Coram T.E., Pang E.C. Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought // BMC Genomics 8 (2007): 303-316. DOI:10.1186/1471-2164-8-303
32 Yadav S.S., Kumar J., Yadav S.K., Singh S., Yadav V.S., Turner N.C., Redden R. “Evaluation of Helicoverpa and drought resistance in desi and kabuli chickpea” Plant. Genet. Res 4 (2006): 198–203. DOI: https://doi.org/10.1079/PGR2006123

Downloads

How to Cite

Bulatova, K., Mazkirat, S., Kudaibergenov, M., & Baitarakova, K. (2018). Physiological and biochemical changes in chickpea seedlings during acclimatization to low temperatures in the laboratory conditions. Experimental Biology, 71(2), 75–85. Retrieved from https://bb.kaznu.kz/index.php/biology/article/view/1267

Issue

Section

PLANT PHYSIOLOGY AND BIOCHEMISTRY