Molybdoenzymes and molybdenum cofactor in dormant and developing wheat seeds

Авторы

  • Z. А. Alikulov L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
  • G. A. Shalakhmetova Al-Farabi Kazakh National University
  • O. N. Babenko L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
  • R. B. Ulekova Al-Farabi Kazakh National University
  • О. Zh. Bakenova Al-Farabi Kazakh National University
        89 40

Ключевые слова:

Aldehyde oxidase, dormancy, molybdoenzymes, molybdenum cofactor, nitrate reductase, wheat seeds, xanthine dehydrogenase.

Аннотация

The distribution of the activities of molybdenum соfасtor (МоСо) and molybdenum containing enzymes - nitrate reductase (NR), aldehyde oxidase (АО) and xanthine dеhуdrоgеnаsе (XDH) in different parts of dormant and developing wheat seeds are studied. The activities of МоСо, АО and XDH were highest in the embryo. The aleurone layer of the seed also showed these activities; however, activity levels in the aleurone were approximately three times lower than those in the embryo. The activities of these molybdoenzymes were not detected in the endosperm portion of the seed. There was no detectable NR activity in any part of the seed. The XDH activity remained at a steady level in both the embryo and endosperm throughout the course of seed development and maturation, whereas АО activity was extremely low in these same seed parts. However, АО activity increased at a high rate when seeds entered desiccation phase. At this stage, the content of ureides also increased by two and a half times. It is known that AO is involved in abscisic acid (ABA) biosynthesis, converting abscisic aldehyde to ABA, and the by-product of this reaction is superoxide. Therefore, we propose that increased ABA synthesis results in the increase of reactive oxygen species (ROS), which are scavenged by uric acid forming ureides. Тыныштық күй мен даму сатысындағы бидай дәндерінің түрлі бөліктерінде молибденді кофакторлар (Мо-со) мен молибденді ферменттер: нитрат редуктаза (НР), альдегидоксидаза(АО) мен ксантиндегидрогенезаның(КДГ) таралуы зерттелді. МоСо, АО мен КДГ жоғары белсенділікте ұрықта анықталды. Ұрық бөліміне қарағанда алейронды қабатта осы ферменттер мен МоСо белсенділігі үш есе төмен болды. Дәннің эндоспермдік бөлімінде бұл ферменттердің белсенділігі тіркелмеді. НР белсенділігі дәннің ешқандай бөлігінде анықталмады. КДГ белсенділігі даму және жетілу кезеңдерінде ұрық бөлімінде де, эндосперм бөлігінде де бірдей болып сақталса, ал АО белсенділігі аталған бөліктерде экстрималды төмен деңгейде анықталды. Алайда, АО дән дегидратация фазасы кезінде көптеген ылғалды жоғалтқан жағдайда жоғары жылдамдықпен артты. Осы фазада уреидтер де 2,5 есе артты. АО абсциз альдегидін АБҚ-на дейін өзгертіп, АБҚ биосинтезіне қатысатындығы және осы реакция өнімі супероксид екендігі белгілі. Сондықтан да, біз АБҚ-ның жоғары биосинтезі несеп қышқылы арқылы бейтараптанып, уреид түзетін оттегінің реактивті радикалдарының пайда болуына алып келеді деп болжаймыз. Изучены распределение молибденового кофактора( Мо-со) и активностей молибден содержащих ферментов - нитрат редуктазы (НР), альдегид оксидазы (AО) и ксантиндегидрогеназы ( КДГ) в различных частях покоящегося и созревающегося зерна пшеницы. Были показаны наиболее высокие активности МоСо, АО и КДГ - в зародыше. В три раза меньше уровень активности этих же ферментов и Мосо наблюдался в алейроновом слое, чем в зародыше. Активности этих ферментов не обнаруживались в эндоспермальной части семени. Активность НР не обнаруживалась ни в одной части зерна. Активность КДГ оставалась равномерной как в зародыше, так и в эндосперме в течение периода развития и созревания , тогда как активность АО была экстремально низкой в этих частях зерна. Однако активность АО увеличилась с высокой скоростью когда зерновка теряла влажность во время фазы дегидратации. В этой фазе содержание уреидов также увеличивалось в 2,5 раза. Известно, что АО вовлечен в биосинтез АБК, превращая абсцизовый альдегид до АБК, и супероксид становится продуктом этой реакции. Поэтому, мы предполагаем, что повышенный биосинтез АБК приводит к увеличению реактивных радикалов кислорода, которые нейтрализуются с помощью мочевой кислоты образуя уреиды.

Биографии авторов

Z. А. Alikulov, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan

жалпы биология және геномика кафедрасының профессоры

G. A. Shalakhmetova, Al-Farabi Kazakh National University

молекулалық биология және генетика кафедрасының доценті

O. N. Babenko, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan

жалпы биология және геномика кафедрасының PhD lдокторанты

R. B. Ulekova, Al-Farabi Kazakh National University

молекулалық биология және генетикакафедрасыныңмагистранты;

О. Zh. Bakenova, Al-Farabi Kazakh National University

молекулалық биология және генетикакафедрасыныңмагистранты;

Библиографические ссылки

References
1. Zeevaart, J.A.D., Creelman, R.A. (1988) Metabolism and physiology of abscisic acid. Annual Review of Plant Physiology and PlantMolecular Biology 39, 439-473.
2. Black, M., Bewley, J.D., Halmer, P. (2006). The Encyclopedia of seeds: Science, Technology and Uses. Wallingford, Oxfordshire: CAB International, pp. 40.
3. Baskin, J.M., Baskin, C.C. (2004) A classification system for seed dormancy.Seed Science Research14(1), 1-16.
4. Fang, J. and Chu, C. (2008) Abscisic acid and the pre-harvest sprouting in cereals.Plant Signaling & Behavior3(12), 1046-1048.
5. Parry, A.D., Neill, S.J., Horgan, R. (1988) Xantoxin levels and metabolism in the wild-type and wilty mutants of tomato. Planta173, 397-404.
6. Fang, J., Chai, C., Qian, Q., Li, C., Tang, J., Sun, L., Huang, Z., Guo, X., Sun, C., Liu, M. (2008) Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice. Plant Journal54, 177-189.
7. Leydecker, M.T., Moureaux, T., Kraepiel, Y., Schnorr, K., Caboche, M. (1995) Molybdenum cofactor mutants, specifically impaired in xanthine dehydrogenase activity and abscisic acid biosynthesis, simultaneously overexpress nitrate reductase. Plant Physiology107, 1427-1431.
8. Schwarz, G., Mendel, R.R., Ribbe, M.W. (2009) Molybdenum cofactors, enzymes and pathways. Nature 460, 839–847.
9. Ori, N., Eshed, Y., Pinto, P., Paran, I., Zamir, D., Fluhr, R. (1997) TAO1, a representative of molybdenum cofactor containing hydroxylases from tomato. Journal of Biological Chemistry 272, 1019-1025.
10. Sekimoto, H., Seo, M., Dohmae, N., Takio, K., Kamiya, Y., Koshiba, T. (1997) Cloning and molecular characterization of plant aldehyde oxidase. Journal of Biological Chemistry272, 15280-15285.
11. Kruse, T., Gehl, C., Geisler, M., Lehrke, M., Ringel, P., Hallier, S., Hansch, R., Mendel, R.R. (2010)Identification and biochemical characterization of molybdenum cofactor-binding proteins from Arabidopsis thaliana.Journal of Biological Chemistry 285, 6623–6635.
12. Koshiba, T., Saito, E., Ono, N., Yamamoto, N., Sato, M. (1996) Purification and properties of flavin- and molybdenum-containing aldehyde oxidase from coleoptiles of maize.Plant Physiology110, 781-789.
13. Omarov, R.T., Akaba, S., Koshiba, T., Lips, S.H. (1999) Aldehyde oxidase in roots, leaves and seeds of barley (Hordeumvulgare L.). Journal of Experimental Botany50, 63-69.
14. Alikulov, Z. and Schiemann, J. (1985) Presence of active molybdenum cofactor in dry seeds of wheat and barley. Plant Science 40, 161-165
15. Savidov, N.A., Alikulov, Z., Lips, H. (1998) Identification of an endogenous NADPH-regenerating system coupled to nitrate reduction in vitro and fungal crude extracts. Plant Science133(1), 33-45.
16. Vogels and Van der Drift (1970). Differential analyses of glyoxylate derivatives. Analytical Biochemistry 33,143-157.
17. Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principal of protein-dye binding. AnalyticalBiochemistry 72, 248-
18. Gupta, A.K., Sharma, A.K., Guha-Mukherjee, S., Sopory, S.K. (1988) Inhibition of nitrate reductase induction in germinating barley embryos by endosperm.Plant Science 54, 141-145.
19. Kawakami, N., Miyake, Y., Kzuhiko, N. (1997) ABA insensitivity and low ABA levels during seed development of non-dormant wheat mutants. Journal of Experimental Botany48(312), 1415-1421
20. Triplett, E.W., Blevins, D.G., Randall, D.D. (1982) Purification and properties of soybean nodule xanthine dehydrogenase. Archives of Biochemistry and Biophysics 219, 39-46.

Загрузки

Как цитировать

Alikulov Z. А., Shalakhmetova, G. A., Babenko, O. N., Ulekova, R. B., & Bakenova О. Z. (2016). Molybdoenzymes and molybdenum cofactor in dormant and developing wheat seeds. Вестник КазНУ. Серия биологическая, 63(1), 10–19. извлечено от https://bb.kaznu.kz/index.php/biology/article/view/996

Выпуск

Раздел

Экспериментальная биология. Биолог-кие осн. генофонда и развитие науч. исслед. в обл. селек-генетич. исслед. с/х культур