ЭПОХА SARS-COV2 И ПРАВИЛЬНЫЕ СТРАТЕГИИ УПРАВЛЕНИЯ ДЛЯ РЕШЕНИЯ ПРОБЛЕМ КАК В ВИРУСНЫХ ИССЛЕДОВАНИЯХ, ТАК И В ЛЕЧЕНИИ
DOI:
https://doi.org/10.26577/eb.2023.v96.i3.01Ключевые слова:
SARS-COV2, мРНК-геном, ORF (открытые рамки считывания), структурные белки, неструктурные белки (np), классификация вирусов, иммунитет, противовирусные препараты, антитела, IgG, вакцинация и летальный мутагенез. стероидыАннотация
SARS - COV2 или COVID-19 вызвали в 2020 году крупнейшую пандемию со времен окончания Первой мировой войны и за относительно короткий период времени нанесли серьезный ущерб мировому здравоохранению и экономике. В этой статье раскрываются вопросы вакцинации путем понимания врожденных и адаптивных иммунных реакций и того, насколько тесно они взаимосвязаны друг с другом. Также необходимо обсудить клеточную и гуморальную части иммунитета и механизмы распознавания связывания рецепторов, нейтрализацию антител и опосредованные антителами как в адаптивном, так и врожденном иммунитете. Стратегии защиты иммунитета являются объектами обсуждения наряду с клиническими случаями и того, насколько эффективной или неэффективной может быть вакцинация с учетом роли антител в создании иммунитета против этого вируса. Эта статья будет интересна тем, кто планирует разрабатывать либо моноклональные исследования, либо стратегии лечения COVID-19 и даже разработку препаратов для вакцинации.
Библиографические ссылки
Anderson, E.M., Goodwin, E.C., Verma, A., Arevalo, C.P., Bolton, M.J., Weirick, M.E., Gouma, S., McAllister, C.M., Christensen, S.R., Weaver, J., et al. (2020). Seasonal human coronavirus antibodies are boosted upon SARS-CoV-2 infection but not associated with protection. medRxiv.
Balzarini, J.; Holy, A.; Jindrich, J.; Naesens, L.; Snoeck, R.; Schols, D.; De Clercq, E. Differential antiherpesvirus and antiretrovirus effects of the (S) and (R) enantiomers of acyclic nucleoside phosphonates: Potent and selective in vitro and in vivo antiretrovirus activities of (R)-9 (2phosphonomethoxypropyl)-2,6-diaminopurine. Antimicrob. Agents Chemother. 1993, 37, 332–338.
Bergmann-Leitner ES, Mease RM, Duncan EH, Khan F, Waitumbi J, Angov E: Evaluation of immunoglobulin purification methods and their impact on quality and yield of antigen-specific antibodies. Malar J 7:129, 2008.
Beyrau, M., Bodkin, J. V., and Nourshargh, S. (2012). Neutrophil heterogeneity in health and disease: a revitalized avenue in inflammation and immunity. Open Biol. 2:120134. doi: 10.1098/rsob.1201349.
Bharat TA, Davey NE, Ulbrich P, Riches JD, de Marco A, Rumlova M, Sachse C, Ruml T, Briggs JA. Structure of the immature retroviral capsid at 8 Å resolution by cryo -electron microscopy. Nature. 2012; 487(7407): 385-389].
Blanco-Melo, D., Nilsson-Payant, B.E., Liu, W.-C., Uhl, S., Hoagland, D., Møller, R., Jordan, T.X., Oishi, K., Panis, M., Sachs, D., et al. (2020). Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell 181, 1036–1045.e9.
Briard, B., Place, D. E. & Kanneganti, T. D. DNA sensing in the innate immune response. Physiology 35, 112–124 (2020).
Buck DW, Larrick JW, Raubitschek A, Truitt KE, Senyk G, Wang J, Dyer B (1984) Production of human monoclonal antibodies. In. Kennett RH, Bechtol KB and McKearn TJ (ed) Monoclonal Antibodies and Functional Cell Lines. Progress and Applications. New York: Plenum Press; pp 275-309.
Bull, J. J., Sanjuan, R., & Wilke, C. O. (2007). Theory of Lethal Mutagenesis for Viruses. Journal of Virology, 81(6), 2930–2939. doi:10.1128/jvi.01624-06. pp. 2937.
Burashev Y. et al. Coding Complete Genome Sequence of the SARS-CoV-2 Virus Strain, Variant B.1.1, Sampled from Kazakhstan, 2022, Microbiology Resource Announcements. doi: https://journals.asm.org/doi/10.1128/mra.01114-22
Chan, J.F.W. et al. (2020) A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to person transmission: a study of a family cluster. Lancet 395, 514–523.
Chiara M, Horner DS, Gissi C, Pesole G. 2020. Comparative genomics suggests limited variability and similar evolutionary patterns between major clades of SARS-CoV-2. BioRxiv. https://doi.org/10.1101/2020.03.30.016790.
Choy, K.-T.;Wong, A.Y.-L.; Kaewpreedee, P.; Sia, S.F.; Chen, D.; Hui, K.P.Y.; Chu, D.K.W.; Chan,M.C.W.; Cheung, P.P.-H.; Huang, X.; et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antivir. Res. 2020, 178, 104786.
Christian Powell, Christopher Chang, Stanley M. Naguwa, Gurtej Cheema, M. Eric Gershwin, Steroid induced osteonecrosis: An analysis of steroid dosing risk. Autoimmunity Reviews (2010) 724-743.
Clinical management of COVID-19 15th September 2022, WHO p.110
Clinical management of COVID-19 15th September 2022, WHO p.113-115
Clinical management of COVID-19 15th September 2022, WHO p.35- 62.
Coffin JM. Structure and classification of retroviruses. In: Levy, JA. The Retroviridae (First edition). New York: Plenum; 1992. p. 20. ISBN 0-306-44074-1.
Crotty, S., & Andino, R. (2002). Implications of high RNA virus mutation rates: lethal mutagenesis and the antiviral drug ribavirin. Microbes and Infection, 4(13), 1301–1307. doi:10.1016/s1286-4579(02)00008-4
Dan, J.M., Mateus, J., Kato, Y., Hastie, K.M., Faliti, C.E., Ramirez, S.I., Frazier, A., Yu, E.D., Grifoni, A., Rawlings, S.A., et al. (2021). Immunological memory to SARS-CoV-2 assessed for up to eight months after infection. Science, eabf406.
Delang L, Abdelnabi R and Neyts J: Favipiravir as a potential countermeasure against neglected and emerging RNA viruses. Antiviral Res 2018; 153: 85-94.
Edited Li, G.; Yue, T.; Zhang, P.; Gu, W.; Gao, L.-J.; Tan, L. Drug Discovery of Nucleos(t)ide Antiviral Agents: Dedicated to Prof. Dr. Erik De Clercq on Occasion of His 80th Birthday. Molecules 2021, 26, 923.
Edited Tsai, C.-C.; Follis, K.E.; Sabo, A.; Beck, T.W.; Grant, R.F.; Bischofberger, N.; Benveniste, R.E.; Black, R. Prevention of SIV Infection in Macaques by (R)-9-(2-Phosphonylmethoxypropyl) adenine. Science 1995, 270, 1197–1199.
Elfiky, A.A. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci. 2020, 253, 117592.
Emanuel PA, Dang J, Gebhardt JS, Aldrich J, Garber EAE, Henrieta K, Stopa P, Valdes JJ, Schultz AD: Recombinant antibodies: a new reagent for biological agent detection. Biosens Bioelectron 14:761–770, 2000.
Espy, N., Nagle, E., Pfeffer, B., Garcia, K., Chitty, A. J., Wiley, M., … Palacios, G. (2019). T-705 induces lethal mutagenesis in Ebola and Marburg populations in macaques. Antiviral Research. doi:10.1016.
Falzarano D, de Wit E, Martellaro C, Callison J, Munster VJ, Feldmann H. Inhibition of novel beta coronavirus replication by a combination of interferon‐alpha2b and ribavirin. Sci Rep. 2013;3: 1686.
Franz, K. M., Neidermyer, W. J., Tan, Y. J., Whelan, S. P. J. & Kagan, J. C. STING-dependent translation inhibition restricts RNA virus replication. Proc. Natl Acad. Sci. USA 115, E2058–E2067 (2018).
Ganguly S, Wakchaure R (2016) Hybridoma technology: a brief review on its diagnostic and clinical significance. Pharmaceut Biol Eval 3(issue 6):554–555.
Ghosh S, Wakchaure R (2013) Monoclonal antibodies: a tool in clinical research. J Indian Acad Clin Med 4:9–21. https://doi.org/10.4137/IJCM.S11968.
Gorbalenya, A.E. et al. (2020) The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 5, 536–544.
Graci JD, Cameron CE. Mechanisms of action of ribavirin against distinct viruses. Rev Med Virol. 2006;16(1):37‐48.
Grifoni, A., Weiskopf, D., Ramirez, S.I., Mateus, J., Dan, J.M., Moderbacher, C.R., Rawlings, S.A., Sutherland, A., Premkumar, L., Jadi, R.S., et al. (2020). Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell 181, 1489–1501.e15.
Gudbjartsson, D.F., Norddahl, G.L., Melsted, P., Gunnarsdottir, K., Holm, H.,Eythorsson, E., Arnthorsson, A.O., Helgason, D., Bjarnadottir, K., Ingvarsson,R.F., et al. (2020). Humoral Immune Response to SARS-CoV-2 in Iceland.N. Engl. J. Med. 383, 1724–1734.
Hoffmann, M. et al. (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280.
Isho, B., Abe, K.T., Zuo, M., Jamal, A.J., Rathod, B., Wang, J.H., Li, Z., Chao, G., Rojas, O.L., Bang, Y.M., et al. (2020). Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Sci. Immunol. 5, eabe5511.
Ivan Dorp L, Acman M, Richard D, Shaw LP, Ford CE, Ormond L, Owen CJ, Pang J, Tan CCS, Boshier FAT, Ortiz AT, Balloux F. 2020. Emergence of genomic diversity and recurrent mutations in SARS-CoV-2. Infect Genet Evol 83:104351. https://doi.org/10.1016/j.meegid.2020.104351.
Jia Y, Shen G, Nguyen S, Zhang Y, Huang K-S, Ho H-Y, Hor W-S, Yang C-H, Bruning JB, Li C, Wang W-L. 2020. Analysis of the mutation dynamics of SARS-CoV-2 reveals the spread history and emergence of RBD mutant with lower ACE2 binding affinity. BioRxiv. https://doi.org/10.1101/2020.04.09.034942.
Johns Hopkins University. 2019. COVID-19 data repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. https://github.com/CSSEGISandData/COVID-19. Retrieved 15 October 2022.)
Joshi S, Parkar J, Ansari A, Vora A, Talwar D and Tiwaskar M: Role of favipiravir in the treatment of COVID-19. Int J Infect Dis 2021; 102: 501-8.
Kanneganti, T. D. Intracellular innate immune receptors: life inside the cell. Immunol. Rev. 297, 5–12 (2020).
Kanneganti, T. D. Intracellular innate immune receptors: life inside the cell. Immunol. Rev. 297, 5–12 (2020).
Kaul TN, Welliver RC, Ogra PL. Comparison of fluorescent-antibody, neutralizing-antibody, and complement-enhanced neutralizing-antibody assays for detection of serum antibody to respiratory syncytial virus. J Clin Microbiol. (1981) 13:957–62.25.
Köhler G, Milstein C: Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497, 1975.
Koren G, King S, Knowles S, Phillips E. Ribavirin in the treatment of SARS: A new trick for an old drug? CMAJ. 2003;168(10):1289‐1292.
Kruijsen D, Bakkers MJ, van Uden NO, Viveen MC, van der Sluis TC, Kimpen JL, et al. Serum antibodies critically affect virus-specific CD4+/CD8+ T cell balance during respiratory syncytial virus infections. J Immunol. (2010) 185:6489–98. doi: 10.4049/jimmunol.1002645.].
Lee N, Hui D, Wu A, et al. A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med. 2003;348(20):1986-1994.
Li, Q. et al. (2020) Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. 382, 1199–1207
Lu, L.L., Suscovich, T.J., Fortune, S.M., and Alter, G. (2018). Beyond binding: antibody effector functions in infectious diseases. Nat. Rev. Immunol. 18, 46–61.15.
Lu, R. et al. (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395, 565–574.
Lu, R. et al. (2020) Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395, 565–574.
Marilyn J. Roossinck, Viren, htps://doi.org/10.1007/978-3-662-61684-0, ISBN 978-3-662-61684-0 (eBook), pp.28
Martínez JM, Martínez MI, Suárez AM, Hezzanz C, Casaus P, Cintas LM, Rodríguez JM, Hernández PE: Generation of polyclonal antibodies of predetermined specificity against pediocin PA-1. Appl Environ Microbiol 64:4536–4545, 1998.
McDaniel, Y. Z., Patterson, S. E., & Mansky, L. M. (2019). Distinct dual antiviral mechanism that enhances hepatitis B virus mutagenesis and reduces viral DNA synthesis. Antiviral Research, 104540. doi:10.1016/j.antiviral.2019.1045
Morris TJ, Stanley EF: A simple method for immunocytochemical staining with multiple rabbit polyclonal antibodies. J Neurosci Methods 127:149–155, 2003.
Myung J.1., Kye-Hyung Kim. In vitro antiviral activity of ribavirin against severe fever with thrombocytopenia syndrome virus. Korean J Intern Med. 2017 Jul; 32(4): 731–737.
Neubig, Richard R. (2003). "International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. XXXVIII. Update on Terms and Symbols in Quantitative Pharmacology". Pharmacological Reviews. 55 (4): 597–606. doi:10.1124/pr.55.
Oran, D.P., and Topol, E.J. (2020). Prevalence of Asymptomatic SARS-CoV-2 Infection: A Narrative Review. Ann. Intern. Med. 173, 362–367.11.
Parray HA, Shukla S, Samal S et al (2020) Hybridoma technology a versatile method for isolation of monoclonal antibodies, its applicability across species, limitations, advancement and future perspectives. Int Immunopharmacol. 85:106639. https://doi.org/10.1016/j.intimp.2020.1066.
Parray HA, Shukla S, Samal S et al (2020) Hybridoma technology a versatile method for isolation of monoclonal antibodies, its applicability across species, limitations, advancement and future perspectives. Int Immunopharmacology. 85:106639. https://doi.org/10.1016/j.intimp.2020.106639.
Perales, C., Gallego, I., de Ávila, A. I., Soria, M. E., Gregori, J., Quer, J., & Domingo, E. (2019). The increasing impact of lethal mutagenesis of viruses. Future Medicinal Chemistry, 11(13), 1645–1657. doi:10.4155/fmc-2018-0457
Perales, C., Martín, V., & Domingo, E. (2011). Lethal mutagenesis of viruses. Current Opinion in Virology, 1(5), 419–422. doi:10.1016/j.coviro.2011.09.001
Perlman, S. and Netland, J. (2009) Coronaviruses post-SARS: update on replication and pathogenesis. Nat. Rev. Microbiol. 7, 439–450.
Perlman, S. and Netland, J. (2009) Coronaviruses post-SARS: update on replication and pathogenesis. Nat. Rev. Microbiol. 7, 439–450.
Piccoli, L., Park, Y.-J., Tortorici, M.A., Czudnochowski, N., Walls, A.C., Beltramello, M., Silacci-Fregni, C., Pinto, D., Rosen, L.E., Bowen, J.E., et al. (2020). Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology. Cell 183, 1024–1042.e21.
Pohanka M, Pavliš O, Kroča M: ELISA detection of Francisella tularensis using polyclonal and monoclonal antibodies. Def Sci J 58:698–702, 2008a.
Pohanka M: Evaluation of immunoglobulin production during tularemia infection in BALB/c mouse model. Acta Vet Brno 76:579–584, 2007.
Rabson AB, Graves BJ. Synthesis and processing of viral RNA. In: Coffin JM, Hughes SH, Varmus HE, editors. Retroviruses. Cold Spring Harbor (NY): Cold Spring Har‐ bor Laboratory Press; 1997.
Reed Magleby, Lars F Westblade, Alex Trzebucki, Matthew S Simon, Mangala Rajan, Joel Park, Parag Goyal, Monika M Safford, Michael J SatlinImpact of Severe Acute Respiratory Syndrome Coronavirus 2 Viral Load on Risk of Intubation and Mortality Among Hospitalized Patients with Coronavirus Disease 2019 | Clinical Infectious Diseases | Oxford Academic (oup.com)
Rob W. Brooker; Zaal Kikvidze. Importance: an overlooked concept in plant interaction research. Journal of Ecology 2008, 96, 703–708. https://doi.org/10.1111/j.1365-2745.2008.01373.x
Roe et al., Journal of General Virology 2021;102:001558 DOI 10.1099/jgv.0.001558.
Rui, Y. et al. Unique and complementary suppression of cGAS–STING and RNA sensing—triggered innate immune responses by SARS-CoV-2
Saeed AFUH, Awan SA (2016) Advances in monoclonal antibodies production and cancer therapy. MOJ Immunol 3(4):00099. https://doi.org/10. 15406/moji.2016.03.00099.
Shailendra K. Saxena and Sai V. Chitti (2016) Molecular Biology and Pathogenesis of Retroviruses. Advances in Molecular Retrovirology, 9-24.
Shulman M, Wilde CD, Köhler G (1978) A better cell line for making hybridomas secreting specific antibodies. Nature 276(1978):269–270.
Singh, K. K., Chaubey, G., Chen, J. Y. & Suravajhala, P. Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis. Am. J. Physiol. Cell Physiol. 319, C258–C267 (2020).
Smyth MJ, Cretney E, Kelly JM, Westwood JA, Street SE, Yagita H, et al. Activation of NK cell cytotoxicity. Mol Immunol. (2005) 42:501–10. doi: 10.1016/j.molimm.2004.07.03422.
Snijder, E.J. et al. (2006) Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J. Virol. 80, 5927–5940.
Somodevilla-Torres MJ, Hillyard NC, Morton H, Alewood D, Halliday JA, Alewood PF, Vesey DA, Walsh MD, Cavanagh AC: Preparation and characterization of polyclonal antibodies against human chaperonin 10. Cell Stress Chaperones 5:14–20, 2000.
Sun, B. et al. Dengue virus activates cGAS through the release of mitochondrial DNA. Sci. Rep. 7, 3594 (2017).
Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP–AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013)
Van Erp, E. A., Luytjes, W., Ferwerda, G., & van Kasteren, P. B. (2019). Fc-Mediated Antibody Effector Functions During Respiratory Syncytial Virus Infection and Disease. Frontiers in Immunology, 10. doi:10.3389/fimmu.2019.00548 pp. 221.
Van Erp, E. A., Luytjes, W., Ferwerda, G., & van Kasteren, P. B. (2019). Fc-Mediated Antibody Effector Functions During Respiratory Syncytial Virus Infection and Disease. Frontiers in Immunology, 10. doi:10.3389/fimmu.2019.00548 pp.2-3.23.
Van Erp, E. A., Luytjes, W., Ferwerda, G., & van Kasteren, P. B. (2019). Fc-Mediated Antibody Effector Functions During Respiratory Syncytial Virus Infection and Disease. Frontiers in Immunology, 10. doi:10.3389/fimmu.2019.00548 pp 4.
Varmus H. Retroviruses. Science. 1988; 240(4858): 1427-1435.
Viren, Walter Doerfer (2002), ISBN 3-596-15369-7, pp. 37-42.
Viren, Walter Doerfer (2002), ISBN 3-596-15369-7, pp. 42-49.
Viren, Walter Doerfer (2002), ISBN 3-596-15369-7, pp. 49-51.
Viren, Walter Doerfer (2002), ISBN 3-596-15369-7, pp. 49-52.
Viren, Walter Doerfer (2002), ISBN 3-596-15369-7, pp. 52-53.
Viren, Walter Doerfer (2002), ISBN 3-596-15369-7, pp. 54-58.
Viren, Walter Doerfer (2002), ISBN 3-596-15369-7, pp. 60-61.8.
Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. 2020. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181:281–292.e6. https://doi.org/10.1016/j.cell.2020.02.058.
Wang M, Cao R, Zhang L, Yang X, Liu J and Xu M: Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in-vitro. Cell Res 2020; 30(3): 269-71.
Wang, D. et al. (2020) Clinical characteristics of 138 hospitalzed patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 323, 1061–1069.48
World Health Organization. 2020. Coronavirus disease (COVID-19) weekly epidemiological update and weekly operational update. https://www.who.int/ emergencies/diseases/novel-coronavirus-2019/situation-reports/. Retrieved 15 October 2022.
Wu, F. et al. (2020) A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269.
Wu, H.-Y. and Brian, D.A. (2010) Subgenomic messenger RNA amplification in coronaviruses. Proc. Natl. Acad. Sci. U. S. A. 107, 12257–12262.
Wyatt R, Sodroski J. The HIV-1 envelope glycoproteins: Fusogens, antigens, and im‐ munogens. Science. 1998; 280(5371): 1884-1888.
Xiaoying XuYuheng ChenXinyu LuWanlin ZhangWenxiu FangLuping YuanXiaoyan Wang. An update on inhibitors targeting RNA-dependent RNA polymerase forCOVID-19 treatment: Promises and challenges. Biochemical pharmacology 205 (2022). https://doi.org/10.1016/j.bcp.2022.115279.
Yousuke. А., et.al. Favipiravir (T-705), a broad-spectrum inhibitor of viral RNA polymerase. Proc. Jpn. Acad., Ser. B 93 (2017).
Zhang W, Cao S, Martin JL, Mueller JD, Mansky LM. Morphology and ultrastructure of retrovirus particles. AIMS Biophys. 2015; 2(3): 343-369.
Zhang, Y.Z. and Holmes, E.C. (2020) A genomic perspective on the origin and emergence of SARS-CoV-2. Cell 181, 223–227.
Zhang, Y.Z. and Holmes, E.C. (2020) A genomic perspective on the origin and emergence of SARS-CoV-2. Cell 181, 223–227.) Perlman, S. and Netland, J. (2009) Coronaviruses post-SARS: update on replication and pathogenesis. Nat. Rev. Microbiol. 7, 439–450).
Zhugunissov K, Zakarya K, Khairullin B, Orynbayev M, Abduraimov Y, Kassenov M, Sultankulova K, Kerimbayev A, Nurabayev S, Myrzakhmetova B, Nakhanov A, Nurpeisova A, Chervyakova O, Assanzhanova N, Burashev Y, Mambetaliyev M, Azanbekova M, Kopeyev S, Kozhabergenov N, Issabek A, Tuyskanova M, Kutumbetov L. 2021. Development of the inactivated QazCovid-in vaccine: protective efficacy of the vaccine in Syrian hamsters. Front Microbiol 12:720437. https://doi.org/10.3389/fmicb.2021 .720437.
Zohar, T., Loos, C., Fischinger, S., Atyeo, C., Wang, C., Slein, M.D., Burke, J.,Yu, J., Feldman, J., Hauser, B.M., et al. (2020). Compromised humoral functional evolution tracks with SARS-CoV-2 mortality. Cell 183, 1508–1519.e12.