Исследование влияния остеофильного бисфосфонатного полимера на пролиферацию, остеогенную дифференцировку адипозных мезенхимальных стволовых клеток и изучение его способности ингибировать активность остеокластов in vitro

Авторы

  • F. Olzhayev
  • Y. Safarova (Yantsen)
  • A. Tsoy
  • B. Umbayev
  • S. Askarova

DOI:

https://doi.org/10.26577/eb-2018-4-1364
        88 77

Аннотация

Остеопороз – это прогрессирующее системное заболевание, характеризующееся снижением костной массы и нарушением микроархитектоники костной ткани, приводящее к увеличению хрупкости кости и высокому риску возникновения переломов. Регресс плотности и прочности костной ткани при остеопорозе обусловлен усилением функциональной активности остеокластов и снижением количества клеток-предшественников остеобластов и развития так называемой «остеогенной недостаточности». Нами разрабатывается новый способ клеточной терапии адипозными мезенхимальными стволовыми клетками (AT-MSCs), функционализированными синтетическим остеофильным бисфосфонатным полимером с целью восполнения популяции прогениторных клеток остеогенеза и ингибирования остеокластной активности в очаге замедленного сращения кости при остеопороз-ассоциированных переломах. В настоящей статье отражены данные по синтезу остеофильного полимера, выделению гомогенной клеточной культуры AT-MSCs с оценкой чистоты полученной клеточной популяции, исследованию влияния полимера на пролиферацию и остеогенную дифференцировку AT-MSCs и изучение его способности ингибировать активность остеокластов in vitro. Согласно полученным данным полимер не является цитотоксичным, не оказывает влияния на пролиферативную активность и остеогенную  дифференцировку AT-MSCs, однако существенно ингибирует фагоцитарную активность макрофагов костного мозга. По результатам исследований AT-MSCs, функционализированные остеофильным  полимером могут быть использованы при дальнейших экспериментах на лабораторных животных для оценки эффективности предлагаемого метода стимуляции репаративного остеогенеза in vivo с  использованием  животной модели остеопороза с созданием остеопороз-ассоциированных переломов трубчатых костей. 

Ключевые слова: остеопороз, остеокласты, репаративный остеогенез, адипозные мезенхимальные стволовые клетки, остеофильный полимер, клеточная терапия.

Библиографические ссылки

1 Hernlund E., Svedbom A., Ivergård M., Compston J., Cooper C., Stenmark J., McCloskey E.V., Jönsson B., Kanis J.A. Osteoporosis in the European Union: medical management, epidemiology and economic burden: A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA) // Archives of Osteoporosis. -2013. -Vol. 8, № 1-2. - P. 136.
2 JA K. WHO Technical Report. — University of Sheffield, UK, 2007. — 66.
3 Gullberg B., Johnell O., Kanis J.A. World-wide projections for hip fracture // Osteoporos Int. -1997. -Vol. 7, № 5. - P. 407-413.
4 Johnell O., Kanis J.A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures // Osteoporos Int. -2006. -Vol. 17, № 12. - P. 1726-1733.
5 Giannoudis P., Tzioupis C., Almalki T., Buckley R. Fracture healing in osteoporotic fractures: is it really different? A basic science perspective // Injury. -2007. -Vol. 38 Suppl 1. - P. S90-99.
6 Bone H.G., Hosking D., Devogelaer J.P., Tucci J.R., Emkey R.D., Tonino R.P., Rodriguez-Portales J.A., Downs R.W., Gupta J., Santora A.C., Liberman U.A. Ten years' experience with alendronate for osteoporosis in postmenopausal women // N Engl J Med. -2004. -Vol. 350, № 12. - P. 1189-1199.
7 Cranney A., Wells G., Willan A., Griffith L., Zytaruk N., Robinson V., Black D., Adachi J., Shea B., Tugwell P., Guyatt G. Meta-analyses of therapies for postmenopausal osteoporosis. II. Meta-analysis of alendronate for the treatment of postmenopausal women // Endocr Rev. -2002. -Vol. 23, № 4. - P. 508-516.
8 Wells G., Cranney A., Peterson J., Boucher M., Shea B., Robinson V., Coyle D., Tugwell P. Risedronate for the primary and secondary prevention of osteoporotic fractures in postmenopausal women // Cochrane Database Syst Rev. -2008. № 1. - P. Cd004523.
9 Drake M.T., Clarke B.L., Khosla S. Bisphosphonates: mechanism of action and role in clinical practice // Mayo Clinic proceedings. -2008. -Vol. 83, № 9. - P. 1032-1045.
10 Teitelbaum S.L. Stem cells and osteoporosis therapy // Cell stem cell. -2010. -Vol. 7, № 5. - P. 553-554.
11 Cho S.W., Sun H.J., Yang J.Y., Jung J.Y., An J.H., Cho H.Y., Choi H.J., Kim S.W., Kim S.Y., Kim D., Shin C.S. Transplantation of mesenchymal stem cells overexpressing RANK-Fc or CXCR4 prevents bone loss in ovariectomized mice // Mol Ther. -2009. -Vol. 17, № 11. - P. 1979-1987.
12 Agacayak S., Gulsun B., Ucan M.C., Karaoz E., Nergiz Y. Effects of mesenchymal stem cells in critical size bone defect // Eur Rev Med Pharmacol Sci. -2012. -Vol. 16.
13 Breitbart E.A., Meade S., Azad V., Yeh S., Al-Zube L., Lee Y.S. Mesenchymal stem cells accelerate bone allograft incorporation in the presence of diabetes mellitus // J Orthop Res. -2010. -Vol. 28.
14 Chen K.Y., Dong G.C., Hsu C.Y., Chen Y.S., Yao C.H. Autologous bone marrow stromal cells loaded onto porous gelatin scaffolds containing Drynaria fortunei extract for bone repair // J Biomed Mater Res A. -2013. -Vol. 101.
15 Granero-Molto F., Weis J.A., Miga M.I., Landis B., Myers T.J., O’Rear L. Regenerative effects of transplanted mesenchymal stem cells in fracture healing // Stem Cells. -2009. -Vol. 27.
16 Ito H. Chemokines in mesenchymal stem cell therapy for bone repair: a novel concept of recruiting mesenchymal stem cells and the possible cell sources // Mod Rheumatol. -2011. -Vol. 21.
17 Pak J., Lee J.H., Park K.S., Jeon J.H., Lee S.H. Potential use of mesenchymal stem cells in human meniscal repair: current insights // Open Access J Sports Med. -2017. -Vol. 8. - P. 33-38.
18 Quarto R., Mastrogiacomo M., Cancedda R., Kutepov S.M., Mukhachev V., Lavroukov A. Repair of large bone defects with the use of autologous bone marrow stromal cells // N Engl J Med. -2001. -Vol. 344.
19 Shao J., Zhang W., Yang T. Using mesenchymal stem cells as a therapy for bone regeneration and repairing // Biological Research. -2015. -Vol. 48, № 1. - P. 1-7.
20 Singh J., Onimowo J.O., Khan W.S. Bone marrow derived stem cells in trauma and orthopaedics: a review of the current trend // Curr Stem Cell Res Ther. -2014. -Vol. 10.
21 Tasso R., Ulivi V., Reverberi D., Lo S.C., Descalzi F., Cancedda R. In vivo implanted bone marrow-derived mesenchymal stem cells trigger a cascade of cellular events leading to the formation of an ectopic bone regenerative niche // Stem Cells Dev. -2013. -Vol. 22.
22 Voss P.J., Matsumoto A., Alvarado E., Schmelzeisen R., Duttenhofer F., Poxleitner P. Treatment of stage II medication-related osteonecrosis of the jaw with necrosectomy and autologous bone marrow mesenchymal stem cells // Odontology. -2017.
23 Huang S., Xu L., Zhang Y., Sun Y., Li G. Systemic and Local Administration of Allogeneic Bone Marrow-Derived Mesenchymal Stem Cells Promotes Fracture Healing in Rats // Cell Transplant. -2015. -Vol. 24, № 12. - P. 2643-2655.
24 Horwitz E.M., Prockop D.J., Fitzpatrick L.A., Koo W.W., Gordon P.L., Neel M., Sussman M., Orchard P., Marx J.C., Pyeritz R.E., Brenner M.K. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta // Nature medicine. -1999. -Vol. 5, № 3. - P. 309-313.
25 Cancedda R., Bianchi G., Derubeis A., Quarto R. Cell therapy for bone disease: a review of current status // Stem cells. -2003. -Vol. 21, № 5. - P. 610-619.
26 Horwitz E.M., Prockop D.J., Gordon P.L., Koo W.W., Fitzpatrick L.A., Neel M.D., McCarville M.E., Orchard P.J., Pyeritz R.E., Brenner M.K. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta // Blood. -2001. -Vol. 97, № 5. - P. 1227-1231.
27 Gangji V., Hauzeur J.P. Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells. Surgical technique // The Journal of bone and joint surgery. American volume. -2005. -Vol. 87 Suppl 1, № Pt 1. - P. 106-112.
28 Onishi K., Jones D.L., Riester S.M., Lewallen E.A., Lewallen D.G., Sellon J.L., Dietz A.B., Qu W., van Wijnen A.J., Smith J. Human Adipose-Derived Mesenchymal Stromal/Stem Cells Remain Viable and Metabolically Active Following Needle Passage // Pm r. -2016. -Vol. 8, № 9. - P. 844-854.
29 De Becker A., Riet I.V. Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy? // World journal of stem cells. -2016. -Vol. 8, № 3. - P. 73-87.
30 Schrepfer S., Deuse T., Reichenspurner H., Fischbein M.P., Robbins R.C., Pelletier M.P. Stem cell transplantation: the lung barrier // Transplantation proceedings. -2007. -Vol. 39, № 2. - P. 573-576.
31 Fischer U.M., Harting M.T., Jimenez F., Monzon-Posadas W.O., Xue H., Savitz S.I., Laine G.A., Cox C.S., Jr. Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect // Stem cells and development. -2009. -Vol. 18, № 5. - P. 683-692.
32 Eggenhofer E., Benseler V., Kroemer A., Popp F.C., Geissler E.K., Schlitt H.J., Baan C.C., Dahlke M.H., Hoogduijn M.J. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion // Frontiers in immunology. -2012. -Vol. 3. - P. 297.
33 Kurtz A. Mesenchymal stem cell delivery routes and fate // International journal of stem cells. -2008. -Vol. 1, № 1. - P. 1-7.
34 Kidd S., Spaeth E., Dembinski J.L., Dietrich M., Watson K., Klopp A., Battula V.L., Weil M., Andreeff M., Marini F.C. Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging // Stem cells. -2009. -Vol. 27, № 10. - P. 2614-2623.
35 Sarkar D., Spencer J.A., Phillips J.A., Zhao W., Schafer S., Spelke D.P., Mortensen L.J., Ruiz J.P., Vemula P.K., Sridharan R., Kumar S., Karnik R., Lin C.P., Karp J.M. Engineered cell homing // Blood. -2011. -Vol. 118, № 25. - P. e184-191.
36 Guan M., Yao W., Liu R., Lam K.S., Nolta J., Jia J., Panganiban B., Meng L., Zhou P., Shahnazari M., Ritchie R.O., Lane N.E. Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass // Nature medicine. -2012. -Vol. 18, № 3. - P. 456-462.
37 Yao W., Lane N.E. Targeted delivery of mesenchymal stem cells to the bone // Bone. -2015. -Vol. 70. - P. 62-65.
38 D'Souza S., Murata H., Jose M.V., Askarova S., Yantsen Y., Andersen J.D., Edington C.D., Clafshenkel W.P., Koepsel R.R., Russell A.J. Engineering of cell membranes with a bisphosphonate-containing polymer using ATRP synthesis for bone targeting // Biomaterials. -2014. -Vol. 35, № 35. - P. 9447-9458.
39 Arana M., Mazo M., Aranda P., Pelacho B., Prosper F. Adipose tissue-derived mesenchymal stem cells: isolation, expansion, and characterization // Methods in molecular biology. -2013. -Vol. 1036. - P. 47-61.
40 Tevlin R., McArdle A., Chan C.K.F., Pluvinage J., Walmsley G.G., Wearda T., Marecic O., Hu M.S., Paik K.J., Senarath-Yapa K., Atashroo D.A., Zielins E.R., Wan D.C., Weissman I.L., Longaker M.T. Osteoclast Derivation from Mouse Bone Marrow // Jove-Journal of Visualized Experiments. -2014. № 93.
41 Martins C.A., Leyhausen G., Volk J., Geurtsen W. Effects of Alendronate on Osteoclast Formation and Activity In Vitro // Journal of Endodontics. -2015. -Vol. 41, № 1. - P. 45-49.

References

Agacayak S, B Gulsun, MC Ucan, E Karaoz, Y Nergiz (2012) Effects of mesenchymal stem cells in critical size bone defect. Eur Rev Med Pharmacol Sci vol. 16.
Arana M, M Mazo, P Aranda, B Pelacho, F Prosper (2013) Adipose tissue-derived mesenchymal stem cells: Isolation, expansion, and characterization. Methods Mol Biol vol. 1036, pp. 47-61.
Bone HG, D Hosking, JP Devogelaer, JR Tucci, RD Emkey, RP Tonino, JA Rodriguez-Portales, RW Downs, J Gupta, AC Santora, UA Liberman (2004) Ten years' experience with alendronate for osteoporosis in postmenopausal women. The New England journal of medicine vol. 350, pp. 1189-1199.
Breitbart EA, S Meade, V Azad, S Yeh, L Al-Zube, YS Lee (2010) Mesenchymal stem cells accelerate bone allograft incorporation in the presence of diabetes mellitus. J Orthop Res vol. 28.
Cancedda R, G Bianchi, A Derubeis, R Quarto (2003) Cell therapy for bone disease: A review of current status. Stem Cells vol. 21, pp. 610-619.
Chen KY, GC Dong, CY Hsu, YS Chen, CH Yao (2013) Autologous bone marrow stromal cells loaded onto porous gelatin scaffolds containing drynaria fortunei extract for bone repair. J Biomed Mater Res A vol. 101.
Cho SW, HJ Sun, JY Yang, JY Jung, JH An, HY Cho, HJ Choi, SW Kim, SY Kim, D Kim, CS Shin (2009) Transplantation of mesenchymal stem cells overexpressing rank-fc or cxcr4 prevents bone loss in ovariectomized mice. Molecular therapy : the journal of the American Society of Gene Therapy vol. 17, pp. 1979-1987.
Cranney A, G Wells, A Willan, L Griffith, N Zytaruk, V Robinson, D Black, J Adachi, B Shea, P Tugwell, G Guyatt (2002) Meta-analyses of therapies for postmenopausal osteoporosis. Ii. Meta-analysis of alendronate for the treatment of postmenopausal women. Endocrine reviews vol. 23, pp. 508-516.
D'Souza S, H Murata, MV Jose, S Askarova, Y Yantsen, JD Andersen, CD Edington, WP Clafshenkel, RR Koepsel, AJ Russell (2014) Engineering of cell membranes with a bisphosphonate-containing polymer using atrp synthesis for bone targeting. Biomaterials vol. 35, pp. 9447-9458.
De Becker A, IV Riet (2016) Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy? World J Stem Cells vol. 8, pp. 73-87.
Drake MT, BL Clarke, S Khosla (2008) Bisphosphonates: Mechanism of action and role in clinical practice. Mayo Clin Proc vol. 83, pp. 1032-1045.
Eggenhofer E, V Benseler, A Kroemer, FC Popp, EK Geissler, HJ Schlitt, CC Baan, MH Dahlke, MJ Hoogduijn (2012) Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Front Immunol vol. 3, pp. 297.
Fischer UM, MT Harting, F Jimenez, WO Monzon-Posadas, H Xue, SI Savitz, GA Laine, CS Cox, Jr. (2009) Pulmonary passage is a major obstacle for intravenous stem cell delivery: The pulmonary first-pass effect. Stem Cells Dev vol. 18, pp. 683-692.
Gangji V, JP Hauzeur (2005) Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells. Surgical technique. J Bone Joint Surg Am vol. 87 Suppl 1, pp. 106-112.
Giannoudis P, C Tzioupis, T Almalki, R Buckley (2007) Fracture healing in osteoporotic fractures: Is it really different? A basic science perspective. Injury vol. 38 Suppl 1, pp. S90-99.
Granero-Molto F, JA Weis, MI Miga, B Landis, TJ Myers, L O’Rear (2009) Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells vol. 27.
Guan M, W Yao, R Liu, KS Lam, J Nolta, J Jia, B Panganiban, L Meng, P Zhou, M Shahnazari, RO Ritchie, NE Lane (2012) Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass. Nat Med vol. 18, pp. 456-462.
Gullberg B, O Johnell, JA Kanis (1997) World-wide projections for hip fracture. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA vol. 7, pp. 407-413.
Hernlund E, A Svedbom, M Ivergård, J Compston, C Cooper, J Stenmark, EV McCloskey, B Jönsson, JA Kanis (2013) Osteoporosis in the european union: Medical management, epidemiology and economic burden: A report prepared in collaboration with the international osteoporosis foundation (iof) and the european federation of pharmaceutical industry associations (efpia). Archives of Osteoporosis vol. 8, pp. 136.
Horwitz EM, DJ Prockop, LA Fitzpatrick, WW Koo, PL Gordon, M Neel, M Sussman, P Orchard, JC Marx, RE Pyeritz, MK Brenner (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med vol. 5, pp. 309-313.
Horwitz EM, DJ Prockop, PL Gordon, WW Koo, LA Fitzpatrick, MD Neel, ME McCarville, PJ Orchard, RE Pyeritz, MK Brenner (2001) Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood vol. 97, pp. 1227-1231.
Huang S, L Xu, Y Zhang, Y Sun, G Li (2015) Systemic and local administration of allogeneic bone marrow-derived mesenchymal stem cells promotes fracture healing in rats. Cell Transplant vol. 24, pp. 2643-2655.
Ito H (2011) Chemokines in mesenchymal stem cell therapy for bone repair: A novel concept of recruiting mesenchymal stem cells and the possible cell sources. Mod Rheumatol vol. 21.
JA K. 2007. Who technical report. University of Sheffield, UK.
Johnell O, JA Kanis (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA vol. 17, pp. 1726-1733.
Kidd S, E Spaeth, JL Dembinski, M Dietrich, K Watson, A Klopp, VL Battula, M Weil, M Andreeff, FC Marini (2009) Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells vol. 27, pp. 2614-2623.
Kurtz A (2008) Mesenchymal stem cell delivery routes and fate. Int J Stem Cells vol. 1, pp. 1-7.
Martins CA, G Leyhausen, J Volk, W Geurtsen (2015) Effects of alendronate on osteoclast formation and activity in vitro. J Endodont vol. 41, pp. 45-49.
Onishi K, DL Jones, SM Riester, EA Lewallen, DG Lewallen, JL Sellon, AB Dietz, W Qu, AJ van Wijnen, J Smith (2016) Human adipose-derived mesenchymal stromal/stem cells remain viable and metabolically active following needle passage. PM & R : the journal of injury, function, and rehabilitation vol. 8, pp. 844-854.
Pak J, JH Lee, KS Park, JH Jeon, SH Lee (2017) Potential use of mesenchymal stem cells in human meniscal repair: Current insights. Open access journal of sports medicine vol. 8, pp. 33-38.
Quarto R, M Mastrogiacomo, R Cancedda, SM Kutepov, V Mukhachev, A Lavroukov (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med vol. 344.
Sarkar D, JA Spencer, JA Phillips, W Zhao, S Schafer, DP Spelke, LJ Mortensen, JP Ruiz, PK Vemula, R Sridharan, S Kumar, R Karnik, CP Lin, JM Karp (2011) Engineered cell homing. Blood vol. 118, pp. e184-191.
Schrepfer S, T Deuse, H Reichenspurner, MP Fischbein, RC Robbins, MP Pelletier (2007) Stem cell transplantation: The lung barrier. Transplant Proc vol. 39, pp. 573-576.
Shao J, W Zhang, T Yang (2015) Using mesenchymal stem cells as a therapy for bone regeneration and repairing. Biological Research vol. 48, pp. 1-7.
Singh J, JO Onimowo, WS Khan (2014) Bone marrow derived stem cells in trauma and orthopaedics: A review of the current trend. Curr Stem Cell Res Ther vol. 10.
Tasso R, V Ulivi, D Reverberi, SC Lo, F Descalzi, R Cancedda (2013) In vivo implanted bone marrow-derived mesenchymal stem cells trigger a cascade of cellular events leading to the formation of an ectopic bone regenerative niche. Stem Cells Dev vol. 22.
Teitelbaum SL (2010) Stem cells and osteoporosis therapy. Cell Stem Cell vol. 7, pp. 553-554.
Tevlin R, A McArdle, CKF Chan, J Pluvinage, GG Walmsley, T Wearda, O Marecic, MS Hu, KJ Paik, K Senarath-Yapa, DA Atashroo, ER Zielins, DC Wan, IL Weissman, MT Longaker (2014) Osteoclast derivation from mouse bone marrow. Jove-J Vis Exp vol.
Voss PJ, A Matsumoto, E Alvarado, R Schmelzeisen, F Duttenhofer, P Poxleitner (2017) Treatment of stage ii medication-related osteonecrosis of the jaw with necrosectomy and autologous bone marrow mesenchymal stem cells. Odontology vol.
Wells G, A Cranney, J Peterson, M Boucher, B Shea, V Robinson, D Coyle, P Tugwell (2008) Risedronate for the primary and secondary prevention of osteoporotic fractures in postmenopausal women. The Cochrane database of systematic reviews vol., pp. Cd004523.
Yao W, NE Lane (2015) Targeted delivery of mesenchymal stem cells to the bone. Bone vol. 70, pp. 62-65.

Загрузки

Как цитировать

Olzhayev, F., Safarova (Yantsen), Y., Tsoy, A., Umbayev, B., & Askarova, S. (2019). Исследование влияния остеофильного бисфосфонатного полимера на пролиферацию, остеогенную дифференцировку адипозных мезенхимальных стволовых клеток и изучение его способности ингибировать активность остеокластов in vitro. Вестник КазНУ. Серия биологическая, 77(4), 58–72. https://doi.org/10.26577/eb-2018-4-1364