Антибактериальная активность эфирных масел некоторых видов Artemisia и Thymus в отношении метициллин-резистентного Staphylococcus aureus

Авторы

  • G. A. Utegenova Казахский национальный университет им. аль-Фараби, Казахстан, г. Алматы
  • K. B. Pallister Университет Штата Монтана, Соединённые Штаты Америки, г. Бозмен
  • J. M. Voyich Университет Штата Монтана, Соединённые Штаты Америки, г. Бозмен
  • G. Ozek Анатолийский университет, Турецкая Республика, г. Эскишехир
  • T. Ozek Анатолийский университет, Турецкая Республика, г. Эскишехир
  • L. N. Kirpotina Университет Штата Монтана, Соединённые Штаты Америки, г. Бозмен
  • I. A. Schepetkin Томский политехнический университет, Российская Федерация, г. Томск
  • S. V. Kushnarenko Институт биологии и биотехнологии растений, Республика Казахстан, г. Алматы
        149 62

Ключевые слова:

эфирные масла, антибактериальная активность, метициллин-устойчивый Staphylococcus aureus (MRSA).

Аннотация

Метициллин-резистентный Staphylococcus aureus (MRSA) является возбудителем многих заболеваний, в первую очередь, инфекций кожных и мягких тканей. Возникновение устойчивых к антибиотикам штаммов, таких как MRSA, требует поиска новых средств для борьбы с этим патогеном, в частности, среди природных соединений. Эфирные масла являются природными органическими соединениями, которые обладают широким спектром биологической активности: антимикробная, антивирусная, антиоксидантная, противовоспалительная и иммуномодулирующая. В настоящей работе впервые определена антибактериальная активность эфирных масел, выделенных из 5 видов растений Казахстана: Artemisia kotuchovii Kupr., Artemisia scoparia Waldst. et Kit., Thymus crebrifolius (Klokov), Thymus marschallianus Willd. и Thymus rasitatus (Klokov) в отношении MRSA USA300. Антибактериальную активность эфирных масел определяли с помощью измерения кинетики поглощения света бактериальной суспензией путем расчета ингибирующей концентрации (IС25), при которой происходило ингибирование роста микроорганизмов на 25%. Наибольшим ингибирующим эффектом на рост MRSA обладали эфирные масла A. scoparia, T. marschallianus и T. rasitatus (IС25 = 24,5; 30,9 и 32,7 мкг/мл, соответственно); эфирное масло T. crebrifolius показало низкую активность (IС25 = 73,0 мкг/мл). Эфирное масло A. kotuchovii не проявило активности даже при самой высокой исследованной концентрации 100 мкг/мл.

Библиографические ссылки

1 Baser K.H.C., Buchbauer G. Handbook of Essential Oils. Science, Technology and Applications. – USA: Abingdon: Francis & Taylor Group, CRC Press. – 2010. 991 p. ISBN: 13:978-1-4200-6316-5.
2 Ткачев А.В. Исследование летучих веществ растений. – Новосибирск: Офсет. – 2008. 969 c. ISBN: 978-5-85957-056-0.
3 Burt S. Essential oils: their antibacterial properties and potential applications in foods - A review // Int. J. Food Microbiol., – 2004. – Vol. 94, No. 3. – P. 223-253. DOI: 10.1016/j.ijfoodmicro.2004.03.022.
4 Cavaleiro C., Salgueiro L., Goncalves M.J., Hrimplpeng K., . Pinto J., Pinto E. Antifungal activity of the essential oil of Angelica major against Candida, Cryptococcus, Aspergillus and dermatophyte species // J. Nat. Med. – 2015. – Vol. 69, No. 2. – P. 241-248. DOI: 10.1007/s11418-014-0884-2. 69, 241 (2015).
5 Edris A.E. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review // Phytother. Res. – 2007. – Vol.21, No. 4. – P. 308–323. DOI: 10.1002/ptr.2072.
6 Panella N.A., Dolan M.C., Karchesy J.J., Xiong Y., Peralta-cruz J., Khasawneh M., Montenieri J.A., Maupin G.O. Use of novel compounds for pest control: insecticidal and acaricidal activity of essential oil components from heartwood of Alaska yellow cedar // J. Med. Entomol. – 2005. – Vol. 42, No. 3. – P. 352-358. DOI: 10.1603/0022-2585(2005)042[0352:UONCFP]2.0.CO;2.
7 Yu L.L., Zhou K.K., Parry J. Antioxidant properties of cold-pressed black caraway, carrot, cranberry and hemp seed oils // Food Chemistry. – 2005. – Vol. 91, No. 4. – P. 723–729. DOI: 10.1016/j.foodchem.2004.06.044.
8 Sylvestre S., Legault J., Dufour D., Pichette A. Chemical composition and anticancer activity of leaf essential oil of Myrica gale L. // Phytomedicine. – 2005. – Vol. 12, No. 4. – P. 299–304. DOI: 10.1016/j.phymed.2003.12.004.
9 Azab A., Nassar A., Azab A.N. Anti-Inflammatory activity of natural products // Molecules. – 2016. – Vol. 21, No. 10. – P. 1321. DOI: 10.3390/molecules21101321.
10 Santiesteban-López A., Palou E., López-Malo A. Susceptibility of food-borne bacteria to binary combinations of antimicrobials at selected a(w) and pH // J. Appl. Microbiol. – 2007. – Vol. 102, No. 2. – P. 486 – 497. DOI: 10.1111/j.1365-2672.2006.03092.x.
11 Oussalah M., Caillet S., Lacroix M. Mechanism of action of spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls of Escherichia coli O157:H7 and Listeria monocytogenes // J. Food. Prot. – 2006. – Vol. 69, No. 5. – P. 1046-1055. DOI: 10.4315/0362-028X-69.5.1046.
12 Dryden M.S., Dailly S., Crouch M. A randomized, controlled trial of tea tree topical preparations versus a standard topical regimen for the clearance of MRSA colonization // J. Hosp. Infect. – 2004. – Vol.56, No. 4. – P.283–286. DOI: 10.1016/j.jhin.2004.01.008.
13 Caelli M., Porteous J., Carson C.F., Heller R., Riley T.V. Tea tree oil as an alternative topical decolonization agent for methicillin-resistant Staphylococcus aureus infection // J. Hosp. Infect. – 2000. – Vol. 46, No. 3. – P.236–237. DOI: 10.1053/jhin.2000.0830.
14 Cha J.D., Jeong M.R., Jeong S.I., Moon S.E., Kim J.Y., Kil B.S., Song Y.H. Chemical composition and antimicrobial activity of the essential oils of Artemisia scoparia and A. capillaris // Planta Med. – 2005. – Vol. 71, No. 2. – P.186-190. DOI: 10.1055/s-2005-837790.
15 Deleo F.R., Otto M., Kreiswirth B.N., Chambers H.F. Community-associated methicillin-resistant Staphylococcus aureus // Lancet. – 2010. – Vol. 375, No. 9725. – P. 1557-1568. DOI: 10.1016/S0140-6736(09)61999-1.
16 Long D.R., Mead J., Hendricks J.M., Hardy M.E., Voyich J.M.. 18β-Glycyrrhetinic acid inhibits methicillin-resistant Staphylococcus aureus survival and attenuates virulence gene expression. Antimicrob. Agents Chemother. – 2013. – Vol. 57, No. 1. – P. 241-247. DOI:
10.1128/AAC.01023-12.
17 Li M., Diep B.A., Villaruz A.E., Braughton K.R., Jiang X., DeLeo F.R., Chambers H.F., Lu Y., Otto M. Evolution of virulence in epidemic community-associated methicillin-resistant Staphylococcus aureus // Proc. Natl. Acad. Sci. USA. – 2009. – Vol. 106, No. 14. – P. 5883-5888. DOI: 10.1073/pnas.0900743106.
18 Kennedy A.D., Otto M., Braughton K.R., Whitney A.R., Chen L., Mathema B., Mediavilla J.R., Byrne K.A., Parkins L.D., Tenover F.C., Kreiswirth B.N., Musser J.M., DeLeo F.R., Epidemic community-associated methicillin-resistant Staphylococcus aureus: Recent clonal expansion and diversification // Proc Natl. Acad. Sci. USA. – 2008. – Vol. 105, No. 4. – P. 1327–1332. DOI: 10.1073/pnas.0710217105.
19 Nostro A., Roccaro A.S., Bisignano G., Marino A., Cannatelli M.A., Pizzimenti F.C., Cioni P.L., Procopio F., Blanco A.R. Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms // J. Med. Microbiol. – 2007. – Vol. 56. – P. 519–523. DOI: 10.1099/jmm.0.46804-0.
20 Lambert R.J., Skandamis P.N., Coote P.J., Nychas G.J. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol // J. Appl. Microbiol. – 2001. – Vol. 91, No. 3. – P. 453–462. DOI: 10.1046/j.1365-2672.2001.01428.x.
21 Braga P.C., Dal Sasso M., Culici M., Bianchi T., Bordoni L., Marabini L. Anti-inflammatory activity of thymol: inhibitory effect on the release of human neutrophil elastase // Pharmacology. – 2006. – Vol. 77, No. 3. – P. 130-136. DOI: 10.1159/000093790.
22 Aeschbach R., Loliger J., Scott B.C., Murcia A., Butler J., Halliwell B., Aruoma O.I. Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol // Food Chem. Toxicol. – 1994. – Vol. 32, No. 1. – P. 31–36. DOI: 10.1016/0278-6915(84)90033-4.
23 Alam K., Nagi M.N., Badary O.A., Al-Shabanah O.A., Al-Rikabi A.C., Al-Bekairi A.M. The protective action of thymol against carbon tetrachloride hepatotoxicity in mice // Pharmacol. Res. – 1999. – Vol. 40. – P. 159–163. DOI: 10.1006/phrs.1999.0472.
24 Kang S.H., Kim Y.S., Kim E.K., Hwang J.W., Jeong J.H., Dong X., Lee J.W., Moon S.H., Jeon B.T., Park P.J. Anticancer effect of thymol on AGS human gastric carcinoma cells // J. Microbiol. Biotechnol. – 2016. – Vol. 26, No. 1. – P. 2837. DOI: 10.4014/jmb.1506.06073.
25 Özek G., Demirci F., Özek T., Tabanca N., Wedge D.E., Khan S.I., Baser K.H.C., Duran A., Hamzaoglu E. Gas chromatographic-mass spectrometric analysis of volatiles obtained by four different techniques from Salvia rosifolia Sm., and evaluation for biological activity // J. Chromatogr. A. – 2010. – Vol. 1217, No.5. – P. 741−748. DOI: 10.1016/j.chroma.2009.11.086.
26 Лакин Г.Ф. Биометрия. – Москва:Высшая школа. – 1990. 352 с. ISBN: 5-06-000471-6.
27 Bassole I.H., Juliani H.R. Essential oils in combination and their antimicrobial properties // Molecules. – 2012. – Vol. 17. – P. 3989-4006. DOI: 10.3390/molecules17043989.
28 Rivas da Silva A.C., Lopes P.M., Barros de Azevedo M.M., Costa D.C., Alviano C.S., Alviano D.S. Biological activities of α-pinene and β-pinene enantiomers // Molecules. – 2012. – Vol. 17, No. 6. – P. 6305-6316. DOI: 10.3390/molecules17066305.
29 Leite A.M., Lima E.O., Souza E.L., Diniz M.F.F.M., Trajano V.N., Medeiros I.A. Inhibitory effect of b-pinene, a-pinene and eugenol on the growth of potential infectious endocarditis causing Gram-positive bacteria // Braz. J. Pharm. Sci. – 2007. – Vol. 43, No. 1. – P. 121-126. DOI: 10.1590/S1516-93322007000100015.
30 Zengin H., Baysal A.H. Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy // Molecules. – 2014. – Vol. 19, No. 11. – P. 1773-17798. DOI: 10.3390/molecules191117773.
31 Delaquis P.J., Stanich K., Girard B., Mazza G. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils // Int. J. Food Microbiol. – 2002. – Vol. 74, No. 1-2. – P. 101-109. DOI: 10.1016/S0168-1605(01)00734-6.

References

1 Baser KHC, Buchbauer G (2010) Handbook of Essential Oils. Science, Technology and Applications, Abingdon: Francis & Taylor Group, CRC Press, USA. ISBN: 13:978-1-4200-6316-5.
2 Tkachev AV (2008) Research of volatile substances of plants [Issledovanie letuchih veshhestv rastenij]. Ofset, Novosibirsk. pp. 969. ISBN: 978-5-85957-056-0 (In Russian).
3 Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods - A review. Int. J. Food Microbiol., 94:223-253. DOI: 10.1016/j.ijfoodmicro.2004.03.022.
4 Cavaleiro C, Salgueiro L, Goncalves MJ, Hrimplpeng K, Pinto J, Pinto E (2015) Antifungal activity of the essential oil of Angelica major against Candida, Cryptococcus, Aspergillus and dermatophyte species. J. Nat. Med, 69:241-248. DOI: 10.1007/s11418-014-0884-2. 69, 241 (2015).
5 Edris AE (2007) Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytother. Res, 21:308–323. DOI: 10.1002/ptr.2072.
6 Panella NA, Dolan MC, Karchesy JJ, Xiong Y, Peralta-cruz J, Khasawneh M, Montenieri JA, Maupin GO (2005) Use of novel compounds for pest control: insecticidal and acaricidal activity of essential oil components from heartwood of Alaska yellow cedar. J. Med. Entomol, 42:352-358. DOI: 10.1603/0022-2585(2005)042[0352:UONCFP]2.0.CO;2.
7 Yu LL, Zhou KK, Parry J (2005) Antioxidant properties of cold-pressed black caraway, carrot, cranberry and hemp seed oils. Food Chemistry, 91:723–729. DOI: 10.1016/j.foodchem.2004.06.044.
8 Sylvestre S, Legault J, Dufour D, Pichette A (2005) Chemical composition and anticancer activity of leaf essential oil of Myrica gale L. Phytomedicine, 12:299–304. DOI: 10.1016/j.phymed.2003.12.004.
9 Azab A, Nassar A, Azab AN (2016) Anti-Inflammatory activity of natural products. Molecules, 21: 1321. DOI: 10.3390/molecules21101321.
10 Santiesteban-López A, Palou E, López-Malo A (2007) Susceptibility of food-borne bacteria to binary combinations of antimicrobials at selected a(w) and pH. J. Appl. Microbiol, 102:486 – 497. DOI: 10.1111/j.1365-2672.2006.03092.x.
11 Oussalah M, Caillet S, Lacroix M (2006) Mechanism of action of spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls of Escherichia coli O157:H7 and Listeria monocytogenes. J. Food. Prot, 69:1046-1055. DOI: 10.4315/0362-028X-69.5.1046.
12 Dryden MS, Dailly S, Crouch M (2004) A randomized, controlled trial of tea tree topical preparations versus a standard topical regimen for the clearance of MRSA colonization. J. Hosp. Infect, 56:283–286. DOI: 10.1016/j.jhin.2004.01.008.
13 Caelli M, Porteous J, Carson CF, Heller R, Riley TV (2000) Tea tree oil as an alternative topical decolonization agent for methicillin-resistant Staphylococcus aureus infection. J. Hosp. Infect, 46:236–237. DOI: 10.1053/jhin.2000.0830.
14 Cha JD, Jeong MR, Jeong SI, Moon SE, Kim JY, Kil BS, Song YH (2005) Chemical composition and antimicrobial activity of the essential oils of Artemisia scoparia and A. capillaris. Planta Med, 71:186-190. DOI: 10.1055/s-2005-837790.
15 Deleo FR, Otto M, Kreiswirth BN, Chambers HF (2010) Community-associated methicillin-resistant Staphylococcus aureus. Lancet, 375:1557-1568. DOI: 10.1016/S0140-6736(09)61999-1.
16 Long DR, Mead J, Hendricks JM, Hardy ME, Voyich JM (2013) 18β-Glycyrrhetinic acid inhibits methicillin-resistant Staphylococcus aureus survival and attenuates virulence gene expression. Antimicrob. Agents Chemother, 57:241-247. DOI: 10.1128/AAC.01023-12.
17 Li M, Diep BA, Villaruz AE, Braughton KR, Jiang X, DeLeo FR, Chambers HF, Lu Y, Otto M (2009) Evolution of virulence in epidemic community-associated methicillin-resistant Staphylococcus aureus. Proc. Natl. Acad. Sci. USA, 106:5883-5888. DOI: 10.1073/pnas.0900743106.
18 Kennedy AD, Otto M, Braughton KR, Whitney AR, Chen L, Mathema B, Mediavilla JR, Byrne KA, Parkins LD, Tenover FC, Kreiswirth BN, Musser JM, DeLeo FR (2008) Epidemic community-associated methicillin-resistant Staphylococcus aureus: Recent clonal expansion and diversification. Proc Natl. Acad. Sci. USA, 105:1327–1332. DOI: 10.1073/pnas.0710217105.
19 Nostro A, Roccaro AS, Bisignano G, Marino A, Cannatelli MA, Pizzimenti FC, Cioni PL, Procopio F, Blanco AR (2007) Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J. Med. Microbiol, 56:519–523. DOI: 10.1099/jmm.0.46804-0.
20 Lambert RJ, Skandamis PN, Coote PJ, Nychas GJ (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol, 91:453–462. DOI: 10.1046/j.1365-2672.2001.01428.x.
21 Braga PC, Dal Sasso M, Culici M, Bianchi T, Bordoni L, Marabini L (2006) Anti-inflammatory activity of thymol: inhibitory effect on the release of human neutrophil elastase. Pharmacology, 77:130-136. DOI: 10.1159/000093790.
22 Aeschbach R, Loliger J, Scott BC, Murcia A, Butler J, Halliwell B, Aruoma OI (1994) Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem. Toxicol, 32:31–36. DOI: 10.1016/0278-6915(84)90033-4.
23 Alam K, Nagi MN, Badary OA, Al-Shabanah OA, Al-Rikabi AC, Al-Bekairi AM (1999) The protective action of thymol against carbon tetrachloride hepatotoxicity in mice. Pharmacol. Res, 40:159–163. DOI: 10.1006/phrs.1999.0472.
24 Kang SH, Kim YS, Kim EK, Hwang JW, Jeong JH, Dong X, Lee JW, Moon SH, Jeon BT, Park PJ (2016) Anticancer effect of thymol on AGS human gastric carcinoma cells. J. Microbiol. Biotechnol, 26:2837. DOI: 10.4014/jmb.1506.06073.
25 Özek G, Demirci F, Özek T, Tabanca N, Wedge DE, Khan SI, Baser KHC, Duran A, Hamzaoglu E (2010) Gas chromatographic-mass spectrometric analysis of volatiles obtained by four different techniques from Salvia rosifolia Sm., and evaluation for biological activity. J. Chromatogr. A, 1217:741−748. DOI: 10.1016/j.chroma.2009.11.086.
26 Lakin GF (1990) Biometrics [Biometrija]. Vysshaja shkola, Moscow, pp. 352. ISBN: 5-06-000471-6 (In Russian).
27 Bassole IH, Juliani HR (2012) Essential oils in combination and their antimicrobial properties. Molecules, 17:3989-4006. DOI: 10.3390/molecules17043989.
28 Rivas da Silva AC, Lopes PM, Barros de Azevedo MM, Costa DC, Alviano CS, Alviano DS (2012) Biological activities of α-pinene and β-pinene enantiomers. Molecules, 17:6305-6316. DOI: 10.3390/molecules17066305.
29 Leite AM, Lima EO, Souza EL., Diniz MFFM, Trajano VN, Medeiros IA (2007) Inhibitory effect of b-pinene, a-pinene and eugenol on the growth of potential infectious endocarditis causing Gram-positive bacteria. Braz. J. Pharm. Sci, 43:121-126. DOI: 10.1590/S1516-93322007000100015.
30 Zengin H, Baysal AH (2014) Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy. Molecules, 19:17773-17798. DOI: 10.3390/molecules191117773.
31 Delaquis PJ, Stanich K, Girard B, Mazza G. (2002) Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int. J. Food Microbiol, 74:101-109. DOI: 10.1016/S0168-1605(01)00734-6.

Загрузки

Как цитировать

Utegenova, G. A., Pallister, K. B., Voyich, J. M., Ozek, G., Ozek, T., Kirpotina, L. N., Schepetkin, I. A., & Kushnarenko, S. V. (2018). Антибактериальная активность эфирных масел некоторых видов Artemisia и Thymus в отношении метициллин-резистентного Staphylococcus aureus. Вестник КазНУ. Серия биологическая, 71(2), 116–124. извлечено от https://bb.kaznu.kz/index.php/biology/article/view/1271

Наиболее читаемые статьи этого автора (авторов)