Роль TORсигнальной системы в механизмах адаптации растений к солевому стрессу

Авторы

  • R. I. Bersimbaev Институт клеточной биологии и биотехнологии ЕНУ им. Л.Н. Гумилева, Астана

Ключевые слова:

TOR-киназа, Arabidopsis thaliana, AtTOR гены, солевой стресс, абсцизовая кислота.

Аннотация

TOR киназа эукариотты организмдердің көпшілігінде кездеседі. Олар организмнің өсуі мен даму процесінің реттелуіне қатысып, әр түрлі стресс факторларының әсеріне клетканың метаболизмдік жауабының қалыптасуында маңызды рөл атқарады. Жануарлармен салыстырғанда өсімдіктердің өсуі белгілі жағдайда сыртқы орта жағдайларына тәуелді болады. Сондықтан өсімдіктер клетканың гомеостазын сақтау үшін биотикалық және абиотикалық стрестер тудырған көптеген эндогенді және экзогенді сигналдарға бейімделуі керек. Мақалада өсімдіктердің тұзды стреске адаптациялық жауап беруде абциз қышқылының биохимиялық және физиологиялық механизмдері қарастырылып, гормонның өсімдіктердің ТОR сигналдық жүйесіне әсері талқыланады. TOR сигнальная система присутствует у большинства видов эукариот и играет ключевую роль как в регуляции процессов роста и развития организмов, так и формировании метаболического ответа клетки на действие различных стрессовых факторов. Рост растений, в отличие от животных, в значительной степени зависит от изменений внешних условий. Для поддержания клеточного гомеостаза они должны адаптироваться к множеству эндогенных и экзогенных сигналов, происходящих из биотических и абиотических стрессов. В данном кратком обзоре рассматривается роль TOR сигнальной системы в физиологических механизмах адаптации растений к солевому стрессу и участие в этом процессе абсцизовой кислоты. TOR kinase is present in most eukaryotic species and plays a key role in the regulation of growth and development of organisms and the formation of metabolic response of the cells to the action of various stress factors. Unlike animals, the growth of plants largely depends on changes in external conditions. Therefore, to maintain cellular homeostasis they should be adapted to a plurality of endogenous and exogenous signals originating from biotic and abiotic stresses. In this short review the possible biochemical and physiologic mechanisms of plant adaptation to salt stress and the role of abscisicacid in regulation of TOR signaling pathways are discussed.

Библиографические ссылки

Литература

1. Wullschleger S., Loewith R., Hall M. TOR signaling in growth and metabolism // Cell. - 2006. -Vol.124.- P.471–484.
2. Laplante M., Sabatini D.M. mTOR signaling in growth control and disease // Cell. -2012. -Vol.149. -P. 274-293.
3. Betz C., Hall M.N. Where is mTOR and what is it doing there? // J.Cell Biol.- 2013. -Vol.203.- N.4.- P.563-574.
4. Bjornsti M., Houghton P. The TOR pathway: A target for cancer therapy // Nature Reviews-Cancer. -2004.- Vol. 4. -P. 335–348.
5. Kang S.A., Pacold M.E., Cervantes C.L., Lim D., Low H.J., Ottina K., Gray N.S., Turk B.E., Yaffe M.B., Sabatini D.M. mTOR phosphorylation sites encode their sensitivity to starvation and rapamycin // Science. -2013. -Vol.341.- P. 1236-1246.
6. Templeton G., Moorhead G. The phosphoinositide-3-OH-kinase-related kinases of Arabidopsis thaliana // EMBO Rep. -2005. -Vol. 6.-N.8.- P.723-728.
7. Loewith R., Hall M.N. Target of Rapamycin in nutrient signaling and growth control // Genetics.-2011.- Vol.189. -P. 1177-1201.
8. Martin D., Hall M. The expanding TOR signaling network // Curr. Opin.Cell Biol. -2005. -Vol.17. -P. 158-166.
9. Anderson G. TOR signaling in plants // Plant Cell Monographs. -2008. -Vol.10. -P.243-259.
10. Moreau M., Sormani R., Menand B.,Veit B., Robaglia C., Meyer C. The TOR complex and signaling pathways in plants // Enzymes. -2010. -Vol.27. -P.285-302.
11. Anderson G., Veit B. and Hanson M. The Arabidopsis AtRaptorgenes are essential for post- embryonic plant growth // BMC Biology- 2005.- Vol.3. -P.144–153
12. Caldana C., Li I., Zhang Y.,Bartholomaeus L., Fernie A.R.,Willmitzer L.,Giavalisco P. Systemic analysis of inducible target of rapamycin mutants reveal a general metabolic switch controlling growth in Arabidopsis thaliana // Plant J. -2013.- Vol.73.- P.797-809.
13. Moreau M., Azzopardi M., Clement J., Dobrenel T., Marchive C., Renne C.,Martin-Magniette M.L., Tacconat L., Renou J.P., Robaglia C., Meyer C. Mutations in the Arabidopsis homolog of LST8/GβL, a partner of the target of Rapamycin kinase, impair plant growth, flowering, and metabolic adaptation to long days // Plant Cell .-2012. -Vol.24. -P. 463-481.
14. Xiong Y., Sheen J. The Role of Target of Rapamycin Signaling Networks in Plant Growth and Metabolism // Plant Physiology. -2014. -Vol. 164. -P. 499–512.
15. Serfontein J., NisbetR.E.,Howe J.D., de Vries P.J Evolution of the TSC1/TSC2-TOR signaling pathway // Science Signaling. -2010. -Vol.3. -ra49.
16. Henriques R., BugreL.,Horvath B., Magyar Z. Balancing act: matching growth with environment by the TOR signaling pathway // Journal of Experimental Botany.-2014. -Vol.32. - P.1-11.
17. Mahfous M.M., Kim s., Delauney A.J., Verma D.P. Arabidopsis Target of rapamycin interacts with raptor, which regulates the activity of S6 kinasein response to osmotic stress signals // Plant Cell. -2006. -Vol.18. -P. 477-490.
18. Deprost D., Yao L., Sormani R., Moreau M., Leterreux G., Nicola M., Bedu M., Robaglia C. and Meyer C. The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation // EMBO Rep. -2007. -Vol. 8. -P.864–870.
19. Weisman R., Choder M. The fission yeast TOR homolog, tor1+, is required for the response to starvation and other stresses via a conserved serine // J.Biol.Chem. - 2001. -Vol. 276. -P.7027-7032.
20. Deinlein U., Stephan A.B., Horie T., Luo W., Xu G., Schroeder J.I.. Plant salt-tolerance mechanisms // Trends in Plant Science. -2014. -TRPLSC-1145. -P. 1-9.
21. Szabados L., Savoure A. Proline: a multifunctional amino acid // Trends Plant Sci. – 2009. -Vol. 15.- № 2. - P. 89-97.

Загрузки

Выпуск

Раздел

Экспериментальная биология. Биолог-кие осн. генофонда и развитие науч. исслед. в обл. селек-генетич. исслед. с/х культур