ИНДУЦИРОВАННЫЕ ПЛЮРИПОТЕНТНЫЕ СТВОЛОВЫЕ КЛЕТКИ В РЕГЕНЕРАТИВНОЙ МЕДИЦИНЕ, ФАРМАКОЛОГИИ И НАУКЕ О СТАРЕНИИ

Авторы

  • Ш. К. Адамбеков Центр наук о жизни, Назарбаев Университет, г. Астана
  • Ю. И. Янцен Центр наук о жизни, Назарбаев Университет, г. Астана
  • Р. Б. Исаева Центр наук о жизни, Назарбаев Университет, г. Астана
  • Ш. Н. Аскарова Центр наук о жизни, Назарбаев Университет, г. Астана

Ключевые слова:

метод индуцирования плюрипотентности, патогенез, плюрипотенцияны индукциялаудың методы,

Аннотация

Открытие в 2006 году метода индуцирования плюрипотентности в клетках взрослого организма дало новые возможности в применении стволовых клеток в регенеративной медицине, исследованиях механизмов старения, патогенеза генетических заболеваний и клинических испытаниях лекарственных средств. Тем не менее существуют определенные сложности, связанные с применением индуцированных плюрипотентных стволовых клеток в медицине и фармакологии. В представленном обзоре мы обсуждаем преимущества и недостатки данной технологии в контекстах регенеративной медицины, исследований механизмов старения, патогенеза генетических заболеваний и клинических испытаний лекарственных средств. 2006 жылы ашылған ересек организмнің жасушаларында плюрипотенцияны индукциялаудың методы діңгек жасушаларының регенеративті медицинада, қартайу механизмдер мен генетикалық аурулардың патогенезін зерттеуде жəне дəрілердің клиникалық сынауында қолданылуына жаңа мүмкіндіктерін ашты. Алайда, индукцияланған плюрипотентті діңгек жасушалардың медицина жəне фармакологияда қолданылуында айқын қиыншылықтар бар. Ұсынылған шолуда біз бұл технологияның артықшылықтарын жəне кемшіліктерін регенеративті медицинаның, қартайу механизмдер мен генетикалық аурулардың патогенезін зерттеуінің жəне дəрілердің клиникалық сынауының құрамында талқылаймыз.

Библиографические ссылки

1. Takahashi, K., Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors // Cell.- 2006.-№126. - C. 663–676

2. Dimos, J.T. et al. Induced pluripotent stem cells generated from patients with aLS can be differentiated into motor neurons // Science.- 2008. - №321. –C.1218–1221

3. Karumbayaram, S. et al. Directed differentiation of human-induced pluripotent stem cells generates active motor neurons // Stem Cells. – 2009. - №27.-C.806–811

4. Tateishi, K., He, J., Taranova, O., Liang, G., D’alessio, a.C. & Zhang, y. Generation of insulinsecreting islet-like clusters from human skin fibroblasts // J. Biol. Chem.- 2008. - №283. – C.31601–31607

5. Si-Tayeb, K. et al. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells // Hepatology. – 2010. - №51. - C.297–305

6. Sullivan, G.J. et al. Generation of functional human hepatic endoderm from human induced pluripotent stem cells // Hepatology. – 2010. - №51. – C.329–335

7. Taura, D. et al. Induction and isolation of vascular cells from human induced pluripotent stem cells–brief report // Arterioscler. Thromb. Vasc. Biol.-2009.- №29.- C. 1100–1103

8. Narazaki, G. et al. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells // Circulation.- 2008.-№118.- C.498– 506

9. Boheler, K.R. Stem cell pluripotency: a cellular trait that depends on transcription factors, chromatin state and a checkpoint deficient cell cycle // J. Cell. Physiol. - 2009.- №221.- C.10–17

10. Yu, J., Hu, K., Smuga-Otto, K., Tian, S., Stewart, R., Slukvin, I.I. and Thomson, J.A. Human induced pluripotent stem cells free of vector and
transgene sequences // Science.- 2009. -DOI:10.1126/science.1172482.

11. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T.,Tomoda, K., and Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors // Cell.-2007.- №131.- C.
861–872

12. Inoue, H. and Yamanaka,S.The Use of Induced Pluripotent Stem Cells in Drug Development // Clinical pharmacology & TherapeuTiCs.- 2011.- VOL.89.- №5

13. Stadtfeld M, Maherali N, Breault DT, Hochedlinger K. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell.- 2008. - №2.- C.230-40

14. Woltjen, K. et al. PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells // Nature.-2009.- №458.- C.766–770

15. Huangfu, D., Osafune, K., Maehr, R., Guo, W., Eijkelenboom, A., Chen, S., Muhlestein, W., and Melton, D.A. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2 // Nat. Biotechnol.-2008.- №26.- C.1269–1275.

16. Frederick Anokye-Danso, Chinmay M. Trivedi, Denise Juhr, Mudit Gupta, Zheng Cui, Ying Tian, Yuzhen Zhang,Wenli Yang, Peter J. Gruber, Jonathan A. Epstein,and Edward E. Morrisey. Highly Efficient miRNA-Mediated Reprogramming of Mouse and Human Somatic Cells to Pluripotency // Cell Stem Cell. – 2011. - №8. – C.376–388

17. Spence, J. R. et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro // Nature. – 2011. - №470.- C.105–109

18. Kroon, E. et al. Pancreatic endoderm derived from human embryonic stem cells generates glucoseresponsive insulin-secreting cells in vivo // Nat.Biotechnol. - 2008. - №26. - C.443–452

19. Song, Z. et al. Efficient generation of hepatocytelike cells from human induced pluripotent stem cells // Cell Res. -2009. - №19. C.1233–1242

20. van Laake, L. W. et al. Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction // Stem Cell Res.- 2007. - №1.-C.9–24

21. Chin M.H., Mason M.J., Xie W., Volinia S., Singer M., Peterson C., Ambartsumyan G., Aimiuwu O., Richter L., Zhang J., Khvorostov I., Ott
V., Grunstein M., Lavon N., Benvenisty N., Croce C.M., Clark A.T., Baxter T., Pyle A.D., Teitell M.A., Pelegrini M., Plath K., Lowry W.E. Induced
pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures // Cell Stem Cell. - 2009. - №5. – С.111-23.

22. Bock C., et al. Reference Maps of Human ES and iPS Cell Variation Enable High-Throughput Characterization of Pluripotent Cell Lines // Cell. –2011. - №144. – С.439-452

23. Hanna J. et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin // Science. - №318.- C.1920–1923

24. Wernig M. et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease // Proc. Natl Acad. Sci. USA. –2008. - №105.- C.5856–5861

25. Swijnenburg R.J. et al. Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts // Proc. Natl Acad. Sci. USA.- 2008. - №105.- C.12991–12996

26. Laflamme M. A. et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts // Nat. Biotechnol. - 2007. - №25.- C.1015–1024

27. Boheler K. R. et al. Differentiation of pluripotent embryonic stem cells into cardiomyocytes // Circ. Res.-2002. - №91.- C.189–201

28. Olivier E. N., Qiu C., Velho M., Hirsch R. E. & Bouhassira E. E. Large-scale production of embryonic red blood cells from human embryonic stem cells // Exp. Hematol.-2006.- №34.- C.1635–1642

29. Petersen T. H. et al. Tissue-engineered lungs for in vivo implantation // Science.- 2010. - №329.- C.538–541

30. Ott H. C. et al. Regeneration and orthotopic transplantation of a bioartificial lung // Nat. Med.-2010.-№16.- C.927–933

31. Uygun B. E. et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix // Nat. Med.-2010.- №16.- C.814–820

32. Ott H. C. et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart // Nat. Med.- 2008.- №14.- C.213–221

33. Macchiarini P., Jungebluth P., Go T., Asnaghi M.A., Rees L.E., Cogan T.A., Dodson A., Martorell J., Bellini S., Parnigotto P.P., Dickinson S.C., Hollander A.P., Mantero S., Conconi M.T., Birchall M.A. Clinical
transplantation of a tissue-engineered airway // The Lancet.-2008. - Vol. 372. - № 9655. – C. 2023-2030

34. Ebert A. D. et al. Induced pluripotent stem cells from a spinal muscular atrophy patient // Nature.- 2009. №457.- C. 277–280

35. Zhang J. et al. A human iPSC model of Hutchinson Gilford progeria reveals vascular smooth muscle and mesenchymal stem cell defects // Cell Stem Cell.-2011.- №8.-C.31–45

36. Sean M. Wu and Konrad H. Harnessing the potential of induced pluripotent stem cells for regenerative medicine // Nature Cell Biology.- 2011.-Vol.13. – No5

37. Soldner F. et al. Parkinson’s disease patientderived induced pluripotent stem cells free of viral reprogramming factors // Cell.- 2009. - №136. – C.964–977

38. Nguyen H. N. et al. LRRK2 mutant iPSCderived DA neurons demonstrate increased susceptibility to oxidative stress // Cell Stem Cell. -№8.- C.267–280

39. Swistowski A. et al. Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions // Stem Cells.- 2010.- №28.-1893-1904

40. Nizzardo M. et al. Human motor neuron generation from embryonic stem cells and induced pluripotent stem cells // Cell Mol. Life Sci.-2010.- №67.– C.3837–3847

41. Yang L. et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic- stem-cellderived population // Nature.- 2008.- №453.- C.524–528

42. Laflamme M. A. et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts // Nat. Biotechnol. - 2007.- №25.- C.1015–1024

43. Kattman S. J. et al. Expression of Flk-1/KDR and PDGFR-α marks the emergence of cardiac mesoderm from mouse and human pluripotent stem cells // Cell Stem Cell. – 2011. -№8.- C. 228–240

44. Irion S. et al. Temporal specification of blood progenitors from mouse embryonic stem cells and induced pluripotent stem cells // Development. – 2010. -№137. C.2829–2839

45. Choi K.D. et al. Hematopoietic and endothelial differentiation of human induced pluripotent stem cells // Stem Cells. – 2009. - №27. – C.559–567

46. Lengerke C. et al. Hematopoietic development from human induced pluripotent stem cells // Ann. N.Y. Acad. Sci.- 2009. - №1176. – C.219–227

47. Ma Y. D., Lugus J. J., Park C. & Choi K. Differentiation of mouse embryonic stem cells into blood // Curr. Protoc. Stem Cell Biol. – 2008. – 1, 1F.4

48. Kroon E. et al. Pancreatic endoderm derived from human embryonic stem cells generates glucoseresponsive insulin-secreting cells in vivo // Nat.Biotechnol.- 2008. - №26. – C.443–452

49. D’Amour K.A. et al. Efficient differentiation of human embryonic stem cells to definitive endoderm.//Nat. Biotechnol.- 2005.- №23. – C.1534–1541

50. Hayden E.C. The growing pains of pluripotency // Nature. – 2011. - Vol.473

51. Li H., Collado M., Villasante A., Strati K., Ortega S., Canamero M., Blasco M.A., Serrano M. The Ink4 ⁄ Arf locus is a barrier for iPS cell reprogramming // Nature. – 2009.- №460. – C. 1136–1139

52. Marion M., Strati K., Li H, Tejera A., Schoeftner S., Ortega S., Serrano M., Blasco M. Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells // Cell Stem Cell. – 2009. - №4. –C.141–154

53. Agarwal S. et al. Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients // Nature. -2010. - №464. – C.292–296

54. Ana B., Gil J. Induced pluripotent stem cells and senescence: learning the biology to improve the technology // EMBO reports. – 2010. - Vol.11.- No5

55. Banito A. et al. Senescence impairs successful reprogramming to pluripotent stem cells // Genes Dev. –2009. - №23. – C.2134–2139

56. Kawamura T., Suzuki J., Wang V., Menendez S., Morera B., Raya A., Wahl M., Belmonte J. Linking the p53 tumour suppressor pathway to somatic cell reprogramming // Nature.-2009.- №460. – C.1140–1144

57. Fontana L., Partridge L., Longo V.D. Extending healthy life span– from yeast to humans // Science. –2010. - №328. – C.321–326

58. Taotao C., Li S., Jie Y., Hongjiang W., Ao G., Jiekai C.,Yuan L., Jian Z. and Gang P. Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells //
Aging Cell. – 2011. – C.1–5

59. Lee G. et al. Modelling pathogenesis and treatment of familial dysau using patient-specific iPSCs // Nature. - 2009. - №461. –С. 402–406

60. Raya A. et al. Disease-corrected haematopoietic progenitors from F anaemia induced pluripotent stem cells // Nature - 2009. - №460. – C.53–59

61. Carvajal-Vergara X. et al. Patient-specific induced pluripotent stem-cell-derived models of LEOPaRD syndrome // Nature. – 2010. - №465. –
С.808–812

62. Marchetto M.C. et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells // Cell. – 2010. -№143. – С.527–539

63. Marchetto M.C., Winner B. & Gage F.H. Pluripotent stem cells in neurodegenerative and neurodevelopmental diseases // Hum. Mol. Genet.-2010. -№19. - C.71–76

64. Wichterle H. & Przedborski S. What can pluripotent stem cells teach us about neurodegenerative diseases // Nat. Neurosci. – 2010. - №13. – С.800–804

65. Lee G. & Studer L. Induced pluripotent stem cell technology for the study of human disease // Nat.Methods. – 2010. - №7. – С.25–27

66. Okita K., Yamanaka S. Induced pluripotent stem cells:opporturnities and challenges // Phil.Trans.R. Soc. B. – 2011. – 366. – P.2198-2207

67. Sean M. Wu, Konrad H. Harnessing the potential of induced pluripotent stem cells for regenerative medicine // Nat. Cell Biol. – 2011. – Vol.13. – 5. –P.497-505

68. Banito A., Gil J. Induced pluripotent stem cells and senescence: learning the biology to improve the technology // EMBO reports. – 2010. – Vol.11. - N5. -353-359

Загрузки

Выпуск

Раздел

ГИСТОЛОГИЯ, ЦИТОЛОГИЯ, КЛЕТОЧНАЯ БИОЛОГИЯ