ИССЛЕДОВАНИЕ IN VITRO ПРОБИОТИЧЕСКИХ СВОЙСТВ НОВЫХ ШТАММОВ МОЛОЧНОКИСЛЫХ БАКТЕРИЙ, ЦЕННЫХ ДЛЯ АКВАКУЛЬТУРЫ
DOI:
https://doi.org/10.26577/eb.2021.v89.i4.12Ключевые слова:
молочнокислые бактерии, резистентность, антагонист, пробиотик, аквакультураАннотация
Одним из ключевых пунктов новой парадигмы в работе с рисками биобезопасности аквакультуры является усиление профилактики заболеваний за счет ответственного рыбоводства, включая снижение устойчивости к противомикробным препаратам в аквакультуре и применение подходящих альтернатив противомикробным препаратам, в том числе пробиотиков. В связи с этим, актуальными становятся исследования направленные на разработку и внедрение в практику новых, эффективных пробиотиков для аквакультуры на основе безопасных микроорганизмов, способных предотвращать и лечить заболевания рыб. Целью данного научного исследования являлся поиск и исследование in vitro свойств новых активных штаммов молочнокислых бактерий для разработки отечественного пробиотического препарата, повышающего резистентность и продуктивность ценных видов рыб в аквакультуре. Научная и практическая значимость работы связана с получением новых знаний о толерантности различных видов и штаммов молочнокислых бактерий к неблагоприятным факторам среды, моделирующим некоторые условия желудочно-кишечного тракта ценных видов рыб. В результате данного исследования создана коллекция новых активных штаммов молочнокислых бактерий, резистентных к желчи, фенолу, соли, низким значениям рН и способных выживать в условиях желудочно-кишечного тракта рыб, а также сильных антагонистов, способных сдерживать рост патогенов, вызывающих заболевания рыб. Данная коллекция послужит основой для разработки нового эффективного отечественного пробиотика для аквакультуры.
Библиографические ссылки
FAO. 2020. The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome. – 2020. – 224 p. https://doi.org/10.4060/ca9229en
Thilsted S.H., Thorne-Lyman A., Webb P., Bogard J.R., Subasinghe R., Phillips M.J., et al., Sustaining healthy diets: the role of capture fisheries and aquaculture for improving nutrition in the post-2015 year // Food Policy. – 2016. – Vol. 61. – P.126-131.
Dawood M.A., Koshio S. Vitamin C supplementation to optimize growth, health and stress resistance in aquatic animals // Rev. Aquac. – 2018. – Vol.10. – P. 334-350.
World Bank, Fish to 2030: prospects for fisheries and aquaculture//In Agriculture and Environmental Services Discussion Paper. – 2013. – №3.
Amal M.N.A., Saad M.Z., Streptococcosis in tilapia (Oreochromis niloticus): a review// Pertanika J. Trop. Agric. Sci. – 2011. – Vol. 34, No 2. – P. 195-206.
Stentiford G.D., Sritunyalucksana K., Flegel T.W., Williams B.A., Withyachumnarnkul B., Itsathitphaisarn O., Bass D. New paradigms to help solve the global aquaculture disease crisis // PLoS Pathog. – 2017. – №13. – e1006160.
Stentiford G., Neil D., Peeler E., Shields J., Small H., Flegel T. et al. Disease will limit future food supply from the global crustacean fishery and aquaculture sectors // J. Invertebr. Pathol. – 2012. –Vol.110. –– P. 141-157.
Cabello F.C. Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment // Environ. Microbiol. – 2006. – Vol.68, No7. – Р.1137-1144.
Rico A., Phu T.M., Satapornvanit K., Min J., Shahabuddin A., Henriksson P.J. et al. Use of veterinary medicines, feed additives and probiotics in four major internationally traded aquaculture species farmed in Asia // Aquaculture. – 2013. – Vol. 412. – Р.231-243.
Assefa A., Abunna F. Maintenance of fish health in aquaculture: review of epidemiological approaches for prevention and control of infectious disease of fish// Vet. Med. Int. – 2018. – Vol.20. – 5432497.
Tanwar J., Das S., Fatima Z., Hameed S. Multidrug resistance: an emerging crisis //Interdiscip. Perspect. Infect. Dis. – 2014, 541340. http://dx.doi.org/10.1155/2014/541340
Musharrafieh R., Tacchi L., Trujeque J., et al. Staphylococcus warneri, a resident skin commensal of rainbow trout (Oncorhynchus mykiss) with pathobiont characteristics // Vet. Microbiol. – 2014. – Vol.169, No 1-2. – P. 80-88.
Carlson J.M., Leonard A.B., Hyde E.R., Petrosino J.F., Primm T.P. Microbiome disruption and recovery in the fish Gambusia affinis following exposure to broadspectrum antibiotic // Infect. Drug Resist. – 2017. – Vol.10. – P. 143.
Cabello F.C., Godfrey H.P., Buschmann A.H., Dölz H.J. Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance// Lancet Infect. Dis. – 2016. – Vol. 16. – P.127–133.
Okocha R.C., Olatoye I.O., Adedeji O.B. Food safety impacts of antimicrobial use and their residues in aquaculture // Public Health Rev. – 2018. – Vol.39. – P. 21.
Gasser M., Zingg W., Cassini A., Kronenberg A. Attributable deaths and disability adjusted life-years caused by infections with antibiotic-resistant bacteria in Switzerland// Lancet Infect. Dis. –2019. – Vol. 19. – P.17-18.
Dawood M.A.O., Koshio S. Recent advances in the role of probiotics and prebiotics in carp aquaculture: a review// Aquaculture. – 2016. – Vol. 454. – P. 243-251.
Wang Y.B., Li J.R., Lin J. Probiotics in aquaculture: challenges and outlook// Aquaculture. – 2008. – Vol. 281. – P.1-4.
Nayak S.K. Probiotics and immunity: a fish perspective// Fish Shellfish Immunol. – 2010. – Vol. 29. – P. 2-14.
Goutam Banerjee, Arun Kumar Ray. The advancement of probiotics research and its application in fish farming industries//Research in Veterinary Science. – 2017. – Vol. 115. – P.66-77. http://dx.doi.org/10.1016/j.rvsc.2017.01.016
Narayanan Gobi, Baskaralingam Vaseeharan, Jiann-Chu Chen, Ravichandran Rekha, Sekar Vijayakumar, Mahalingam Anjugam, Arokiadhas Iswarya. Dietary supplementation of probiotic Bacillus licheniformis Dahb1 improves growth performance, mucus and serum immune parameters, antioxidant enzyme activity as well as resistance against Aeromonas hydrophila in tilapia Oreochromis mossambicus// Fish and Shellfish Immunology. – 2018. – Vol. 74. – P. 501-508.
Kaktcham P.M., Temgoua J.B., Zambou M.N., Diaz-Ruiz G., Wacher C., P´erez- Chabela M.L. In Vitro evaluation of the probiotic and safety properties of bacteriocinogenic and non-bacteriocinogenic lactic acid bacteria from the intestines of Nile Tilapia and common carp for their use as probiotics in aquaculture// Probiotics Antimicrob. Prot. – 2018. – Vol.10, No1. – P.98-109. https://doi.org/10.1007/s12602-017-9312-8.
Kuebutornye F.K.A., Abarike E.D., Lu Y., Hlordzi V., Sakyi M.E., Afriyie G., Wang Z., Yuan Li Y., Xie C.X. Mechanisms and the role of probiotic Bacillus in mitigating fish pathogens in aquaculture// Fish Physiol. Biochem. – 2019. – Vol. 46. – P. 819-841. https://doi.org/10.1007/s10695-019-00754-y
Soltani M., Lymbery A., Song S.K., Hossein-Shrkarabi P. Adjuvant effects of medicinal herbs and probiotics for fish vaccines// Rev. Aquac. – 2019. – Vol.11. – P.1325-1341. https://doi.org/10.1111/raq.12295.
Soltani M., Ghosh K., Hoseinifar S.H., Kumar V., Lymbery A.L., Roy S., Ringø E.. Genus bacillus, promising probiotics in aquaculture: Aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish// Rev. Fish. Sci. Aquac. – 2019. – Vol.27, Is.3. – P.331-379. https://doi.org/10.1080/23308249.2019.1597010.
Ringø E., Doan H.V., Lee S.O., Soltani M., Hoseinifar S.H., Harikrishnan R., Song S. K. Probiotics, lactic acid bacteria and bacilli: interesting supplementation for aquaculture// J. Appl. Microbiol. – 2020. – Vol.129, Is.1. – P. 116-136. https://doi.org/10.1111/jam.14628.
Havenaar R., Huis I. The Lactic Acid Bacteria in Health and Disease/ In: Wood B.J.B. (Ed.) 1. Elsevier, New York, NY, USA. – 1992.
Steenbergen L., Sellaro R., van Hemert S., Bosch J.A., Colzato L.S. A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood// Brain Behav. Immun. – 2015. – Vol. 48. – P. 258-264.
Grayfer L., Kerimoglu B., Yaparla A., Hodgkinson J.W., Xie J., Belosevic M. Mechanisms of fish macrophage antimicrobial immunity// Front. Immunol. – 2018. – Vol. 9. – P. 1105. https://doi.org/10.3389/fimmu.2018.01105.
Di J., Chub Z., Zhang Z., Huang J., Du H., Wei Q. Evaluation of the potential probiotic Bacillus subtilis isolated from two ancient sturgeons on growth performance, serum immunity and disease resistance of Acipenser dabryanus//Fish & Shellfish Immunol. – 2019. – Vol. 93. – P.711-719. https://doi.org/10.1016/j.fsi.2019.08.020.
Hoseinifar S.H., Ringø E., Shenavar Masouleh A., Esteban M.A. Probiotic, Prebiotic and synbiotic supplements in sturgeon aquaculture: a review// Rev. Aquacult. – 2014. – Vol. 6. – P.1-14.
Bhatnagar A., Dhillon O. Characterization, screening, and application of bacteria with probiotic properties isolated from the gut of Labeo calbasu (Hamilton)// Fish. Aquatic Life. – 2019. – Vol. 27. – P. 178-189. https://doi.org/10.2478/aopf-2019-0020.
Merrifieldd D.L., Dimitroglou A., Bradley G., Baker R.T.M., Davies S.J. Probiotic applications for rainbow trout (Oncorhynchus mykiss Walbaum) I. Effects on growth performance, feed utilization, intestinal microbiota and related health criteria// Aquacult. Nutr. – 2010. –Vol. 16, Is.5. – P.504-510, https://doi.org/10.1111/j.1365-2095. 2009.00689.x.
Hai N.V. The use of probiotics in aquaculture// J. Appl. Microbiol. – 2015. – Vol. 119, Is.4. – P.917-935, https://doi.org/10.1111/jam.12886.
Nandi A., Banerjee G., Dan S.K., Ghosh K., Ray A.K. Evaluation of in vivo probiotic efficiency of Bacillus amyloliquefaciens in Labeo rohita challenged by pathogenic strain of Aeromonas hydrophila MTCC 1739// Probiotics Antimicrob. Proteins. – 2018. – Vol. 10, Is.2. – P. 391-398, https://doi.org/10.1007/s12602-017-9310-x.
Hoseinifar S.H., Sun Y.-Z., Wang A., Zhou Z. Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives// Front. Microbiol. – 2018. – Vol. 9. – P.2429, https://doi.org/10.3389/fmicb.2018.02429.
Doan H.V., Soltani M., Ring E. In vitro antagonistic effect and in vivo protective efficacy of Gram-positive probiotics versus Gram-negative bacterial pathogens in finfish and shellfish //Aquaculture. – 2021. – Vol.540. – P.736581. https://doi.org/10.1016/j.aquaculture.2021.736581
Balcazar J.L., Blas I., Ruiz-Zarzuela I., Cunningham D., Vendrell D., Muzquiz J.L. The role of probiotics in aquaculture// Vet. Microbiol. – 2006. – Vol.114. – P.173-186.
Zokaeifar H., Balcázar J.L., Kamarudin M.S., Sijam K., Arshad A., Saad C.R. Selection and identification of non-pathogenic bacteria isolated from fermented pickles with antagonistic properties against two shrimp pathogens// J. Antibiot. (Tokyo). – 2012. – Vol.65, Is.6. – P.289-294.
Gueimonde M., Sánchez B., Reyes-Gavilán C.G.D.L., Margolles A. Antibiotic resistance in probiotic bacteria// Front. Microbiol. – 2013. – Vol.4. – P. 202.
Сергалиев Н.Х., Андронов Е.Е., Пинаев А.Г. Изучение микрофлоры осетровых видов рыб, разводимых в УЗВ с применением методов метагеномики / Н.Х. Сергалиев, Е.Е. Андронов, А.Г. Пинаев [и др.] // Сборник научных трудов КНЦЗВ. – 2019. – Т. 8, № 1. – С. 63–68.
EFSA Panel on Biological Hazards (BIOHAZ), Kostas Koutsoumanis, Ana Allende et al. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 13: suitability of taxonomic units notified to EFSA until September 2020// EFSA Journal. – 2021. – Vol.19, Is.1. – P.6377. doi: 10.2903/j.efsa.2021.6377
Garc´es M.E., Olivera N.L., Fern´andez M., Rossi C.R., Sequeiros C. Antimicrobial activity of bacteriocin-producing Carnobacterium spp. isolated from healthy Patagonian trout and their potential for use in aquaculture// Aquac. Res. – 2020. https://doi. org/10.1111/are.14806.
Стоянова Л.Г., Устюгова Е.А., Нетрусов А.И. Антимикробные метаболиты молочнокислых бактерий: разнообразие и свойства// Прикладная биохимия и микробиология. – 2012. – T. 48. – №3. – С.259-275.
Gong L., He H., Li D., Cao L., Ali Khan T., L, Y., Pan L., Yan,L., Ding X., Sun Y., Zhang Y., Yi G., Hu S., Xia L. A new isolate of Pediococcus pentosaceus (SL001) with antibacterial activity against fish pathogens and potency in facilitating the immunity and growth performance of grass carps// Front. Microbiol. – 2019. –Vol. 10. – P. 1384. https://doi. org/10.3389/fmicb.2019.01384.
Ghosh K., Banerjee S., Moon U.M., Khan H.A., Dutta D. Evaluation of gut associated extracellular enzyme-producing and pathogen inhibitory microbial community as potential probiotics in Nile tilapia, Oreochromis niloticus//Int. J. Aquac. – 2017. – Vol.7. – P.143-158. https://doi.org/10.5376/ija.2017.07.0023.
Le B., Yang S.H. Probiotic potential of novel Lactobacillus strains isolated from salted-fermented shrimp as antagonists for Vibrio parahaemolyticus//J. Microbiol. – 2018. – Vol.56. – P. 138-144. https://doi.org/10.1007/s12275-018-7407-x.
Buchinger T.J., Li W., Johnson N.S. Bile salts as semiochemicals in fish// Chem.Senses. –2014. – Vol.39, Is. 8. – P.647-654.
Методические указания по санитарно-эпидемиологической оценке безопасности и функционального потенциала пробиотических микроорганизмов, используемых для производства пищевых продуктов: Методические указания.—М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2011.—104 с.
Chirom Aarti, Ameer Khusro, Rakesh Varghese, Mariadhas Valan Arasu, Paul Agastian, Naïf Abdullah Al-Dhabi, Soundharrajan Ilavenil, Ki Choon Choi. In vitro studies on probiotic and antioxidant properties of Lactobacillus brevis strain LAP2 isolated from Hentak, a fermented fish product of North-East India// LWT - Food Science and Technology. – 2017. – Vol.86. – P.438-446.
Krumperman Paul H. Multiple Antibiotic Resistance Indexing of Escherichia coli to Identify High-Risk Sources of Fecal Contamination of Foods// Applied and environmental microbiology. –1983. – Vol.46, No. 1. – P.165-170.
Руководство к практическим занятиям по микробиологии /Под ред. Егорова Н.С.-М.: Изд-во МГУ,1995. – 186 с.
Sanger F., Niclein S., Coulson A.R.DNA sequencing with chain-terminating inhibitors //Proc. Natl. Acad. Sci. USA. –1977. – Vol.74. – P.5463-5467.
Гланц С. Медико-биологическая статистика. Пер. с англ. – М.: Практика, 1998. – 459 с.
Zheng J., Wittouck S., Salvetti E., Franz C.M.A.P. et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae// Int. J. Syst. Evol. Microbiol. – 2020. – Vol.70. – P. 2782–2858. doi:10.1099/ijsem.0.004107
Новик Г.И. и др. Биологическая активность микроорганизмов-пробионтов //Прикл. биохим. и микробиол. – 2006 – Т.42, №2. – С. 187-194.
Rotchell D, Paul D. Multiple Antibiotic Resistance Index. Fitness and Virulence Potential in Respiratory Pseudomonas aeruginosa from Jamaica// Journal of Medical Microbiology. – 2016. –Vol.65. – P.251-271.
Ayandele A.A., Oladipo E.K., Oyebisi O., Kaka M.O. Prevalence of Multi-Antibiotic Resistant Escherichia coli and Klebsiella species obtained from a Tertiary Medical Institution in Oyo State, Nigeria// Qatar medical journal. – 2020. – Vol.1, Is. 9. – P.1-6.
Hong S.W., Kim J.H., Bae H.J., Ham J.S., Yoo J.G., Chung K.S., Oh M.H. Selection and characterization of broad-spectrum antibacterial substance-producing Lactobacillus curvatus PA40 as a potential probiotic for feed additives// Anim. Sci. J. – 2018. – Vol.89. – P.1459-1467.
Zommiti M., Connil N., Hamida J.B., Ferchichi M. Probiotic Characteristics of Lactobacillus curvatus DN317, a Strain Isolated from Chicken Ceca// Probiotics Antimicrob. Proteins. – 2017. – Vol.9. – P.415-424.
Ying Chen, Leilei Yu, Nanzhen Qiao, Yue Xiao, Fengwei Tian, Jianxin Zhao, Hao Zhang, Wei Chen and Qixiao Zhai. Latilactobacillus curvatus: A Candidate Probiotic with Excellent Fermentation Properties and Health Benefits// Foods. – 2020. – Vol.9. – P.1366. doi:10.3390/foods9101366
Ruiz L, Margolles A and Sánchez B. Bile resistance mechanisms in Lactobacillus and Bifidobacterium// Front. Microbiol. – 2013. – Vol.4. – P.396. doi: 10.3389/fmicb.2013.00396
Wasko A., Polak-Berecka M., Gustaw W. Increased viability of probiotic Lactobacillus rhamnosus after osmotic stress// Acta Aliment. – 2013. – Vol.42, Is.4. – P.520-528.