Әрі қарай, осы сүт қышқылды бактерия штаммдарының антагонистік белсенділігін анықталды [5]. Тәжірибе нәтижесінде 3 сүт қышқылды бактерия штаммы және 1 дрожжы штаммы бактериалдық тестке қарсы белсенділік көрсетті (кесте 3).

3-кесте. Сүт және сүт өнімдерінен бөлініп алынған сүт қышқылы бактериялары мен дрожжылардың антагонистік белсенділігі.

	Штаммдар	Қоректік	Тест культураларының тежелу аймағы,мм					
No		орталар	Eherichia. coli	Staphylococcus	Bacillus			
				aureus	subtilis			
1	Lc.lactis. subsp. Lactis K-17	Γ/C	5	2	3			
		MRS	9	4	2			
2	Lc.lactis. subsp. Lactis IIIC-	Г/С	23	15	23			
	10	MRS	20	17	19			
3	Lb. acidophilus CM-2	Г/С	16	21	19			
		MRS	17	23	22			
4	Lb. brevis ГМ-26	Г/С	8	7	6			
		MRS	9	5	5			
5	Lb. casei subsp. casei TC-26	Г/С	21	17	22			
		MRS	22	16	22			
6	Lb. acidophilus 4C-3	Г/С	6	5	8			
		MRS	7	7	6			
7	Torulopsis kefyr	Г/С	21	22	16			
	ЛБ-23	MRS	23	20	16			

Яғни бұл 4 штаммы одан әрі қарай басқа да қасиеттерін толық зерттеп, ұйытқы жасауда биологиялық жаңа культура ретінде қолдануға болады.

- 1. Курмангалиев. Проблемы экономики молочной и мясной промышленности и ее развитие в условиях рынка. Алматы. Кайнар. -2000. С. 5-29.
- 2. Леонов А.Я. Проблема качества сельскохозяйственного сырья //сборник Материалов международной научно практической конференции. Новосибирск. -2001. С. 28-51.
 - 3. Квасников Е.И., Нестеренко О.А. Молочнокислые бактерии и пути их использования. М.: Наука, 1975.-С.384.
- 4. Банникова Л.А. Селекция молочнокислых бактерий и их применение в молочной промышленности. М.: Пищевая про-ть, 1975.-С.231.
- 5. Луковникова Л.А., Денисова В.А. Исследование антагонистических свойств молочнокислых бактерий использование их при производстве творога //Тр. ВНИИМП.-1979.-Вып.50.-С.41-50.

А.П. Науанова, А.С. Кошаева, А.Ж. Назарова ВЛИЯНИЕ РАЗЛИЧНЫХ ТЕХНОЛОГИЙ ОБРАБОТКИ ПОЧВЫ В ЗЕРНОПАРОВОМ СЕВООБОРОТЕ НА РАСПРОСТРАНЕНИЕ ЦЕЛЛЮЛОЗОРАЗРУШАЮЩИХ МИКРООРГАНИЗМОВ В ПОЧВЕ

(Казахский агротехнический университет им. С.Сейфуллина)

В данной работе изучено распространение целлюлозоразрушающих грибов в почве в зависимости от применения различных технологий обработки почвы в зернопаровом севообороте. Было учтено количество бактерий, использующих органическую форму азота, бактерий и актиномицетов, использующих минеральный источник азота, мицелиальных грибов, а также целлюлозоразрушающих микроорганизмов с дифференцированием на бактерии, грибы и актиномицеты.

Биологическая активность почвы, характеризующая жизнедеятельность почвенных микроорганизмов, подвергается наибольшим изменениям при антропогенных воздействиях. Поэтому необходимо изучать влияние применяемых агротехнических приемов на биологическую активность почвы, а также ее связь с урожайностью возделываемых культур.

Обработка почвы изменяет физико-химические свойства почвы, водно-воздушный и тепловой режимы, строение профиля, по-разному распределяет растительные остатки, что сказывается на характере и интенсивности микробиологических процессов, определяя темпы и направленность синтеза и минерализации органических веществ и, в конечном итоге, урожай растений [1].

Как известно, наиболее закономерные колебания в численностях микроорганизмов выявляются после нарушающих воздействий природного или антропогенного характера: при резком изменении влажности, механических воздействиях, внесении органических и неорганических субстратов. Механизмом таких колебаний являются циклы роста и отмирания микроорганизмов вследствие временного лимитирования роста микроорганизмов субстратом [2].

Степная зона Казахстана является ареной проявления опасных дефляционных эрозионных процессов [3]. В мировой практике широкое распространение имеет технология Ноу-тилл и прямого

посева, при которой снижается себестоимость продукции, увеличивается урожайность культур, а также уменьшается ветровая и водная эрозия почвы.

Однако на вопросы относительно нулевой обработки почв у казахстанских ученых нет ответов, и пока приходится использовать для анализа лишь результаты зарубежных исследований, полученных ими за многие десятилетия [4].

Безусловно, оставление большого количества послеуборочных остатков на поверхности почвы, отсутствие перемешивания слоев почвы и разброс удобрений на поверхности поля не может не приводить к большим различиям физических, биологических и агрохимических свойств по профилю (по горизонтам) почвы. Более высокие темпы гумусонакопления вызывают снижение скорости минерализации растительных остатков и соломы [4], концентрация растительных остатков, а также снижение аэрации за счет уплотнения приводит к накоплению патогенных форм грибов.

Десятилетние исследования (Канада) по эффективности применения нулевой обработки на темно-каштановой тяжелосуглинистой почве показали, что в зернопаровом севообороте наибольшие изменения наблюдались в слое 0-6 см - уменьшалась водопроницаемость и полезная водоудерживающая способность, увеличивалась объемная масса. Но эти показатели в слое 0-12 см не достигали пределов, препятствующих нормальному развитию корневой системы растений. Однако большинство почв не обладает такими благоприятными физическими свойствами, и возможно уплотнение, снижение количества пор, заполненных воздухом.

При нулевой обработке накопление органического вещества происходит преимущественно в поверхностном слое. Через 13 лет применения нулевой обработки в Австралии содержание органического вещества в слое 0-10 см составило 3.13%, при отвальной обработке — 2.87%. Хотя общепринятым считается мнение, что при заделке в почву минерализация растительных остатков, благодаря хорошей аэрации и высокой микробиологической активности, протекает быстрее, чем при нулевой обработке [4].

Процессы минимализации обработок почвы способствует формированию более поверхностного характера биологической активности почвы. В поверхностном слое намного выше содержание гумуса, общего азота, калия и некоторых микроэлементов, выше микробиологическая активность. Однако, вследствие более сильного уплотнения почвы, ослабления аэрации, а нередко и понижения температуры, доступность питательных веществ в этом слое ниже [4].

В Северном Казахстане работы в этом направлении немногочисленны, и актуальность их велика в связи с большой популярностью минимализации обработки почвы в сельском хозяйстве.

Методика исследований

Исследования проводились осенью 2011 года в ТОО «НПЦЗХ им. А.И. Бараева» (п. Шортанды Акмолинской области) и в лаборатории микробиологии Казахского агротехнического университета им. С.Сейфуллина.

Объектами исследований служили почвенные образцы из ТОО, взятые на различной глубине в четырех вариантах обработки почвы.

Почвы в ТОО «НПЦЗХ им. А.И. Бараева» представлены черноземами южными карбонатными, которые содержат 5-6 % гумуса. Среднее содержание валового азота -3-0.3%, валового фосфора - не более 0.1%, горизонт A - 22-24 см, $A+B_1-35$ -40 см, с плотным трещиноватым, крупнокомковатым иллювиальным горизонтом. Содержание карбонатов обнаруживается по всему профилю, с максимумом в среднем (5-6% углекислоты) в средней части профиля.

Соответственно методам Красильникова, отбор образцов почвы проводили методом конверта, а определение численности и структуры комплекса почвенных микроорганизмов определяли методом посева разведений почвенной суспензии на плотные питательные среды [5].

Отбор образцов почвы проводили методом конверта на глубину пахотного слоя (0-10, 10-20, 20-30 см). Все работы проводили с соблюдением максимальной стерильности, в спецодежде.

Для определения численности микроорганизмов пробы почвы высевали в виде суспензии в стерильной дистиллированной воде в разведении $1:10^1$, $1:10^2$, $1:10^3$, прогревали на водяной бане при температуре 80° С в течение 15 мин. Чашки с посевами инкубировали при температуре $(29\pm1)^{\circ}$ С в течение 3 суток. Количество бактерий, использующих органическую форму азота, учитывали на мясопептонном агаре (МПА); бактерий и актиномицетов, использующих минеральный источник азота - на крахмало-аммиачном агаре (КАА); мицелиальные грибы - на подкисленном агаре Чапека-Докса. Целлюлозоразрушающие микроорганизмы выявляли на среде Гетчинсона с последующим дифференцированием на бактерии, грибы и актиномицеты. Посев суспензии высевали в пятикратной повторности. Затем культивировали чашки Петри при температуре $28-30^{\circ}$ С в течение 5-6 суток. По окончании термостатирования производили подсчёт колоний микроорганизмов с учётом разведений.

Одновременно определялась влажность почвы (высушивание в сушильном шкафу до постоянного веса при 105°C).

Результаты и обсуждения

В зернопаровом севообороте при глубокой плоскорезной обработке сосредоточение растительных остатков в верхнем слое 0-10 см обуславливает интенсивное размножение бактерий, усваивающих минеральные (на КАА) и органические (на МПА) формы азота, соответственно 13.5 и 3.6 млн/г почвы, что свидетельствует об активности процессов минерализации органических веществ в почве (табл. 1). В подпахотный слой попадает мало органического вещества, а то, которое имеется в нем, в силу угнетения микробиологических процессов, слабо минерализуется, однако в слое 10-20 см особенно хорошо развиваются целлюлозоразрушающие микроорганизмы (120.9 тыс/г почвы).

Таблица 1 - Влияние способов и глубины обработки почвы на численность микроорганизмов при разных

технологиях возделывания зерновых культур в зернопаровом севообороте

Способ обработки почвы	Влажность почвы, %	Слои почвы, см	Микроорганизмы в 1 г почвы				
			МПА, млн	КАА, млн	грибы, тыс	Целлюлозоразру- шающие тыс	
						общее	актино-
						кол-во	мицеты,
							грибы
Глубокая плоскорезная	20.7	0-10	3.6	13.5	8.2	93.7	48.4
обработка	24.3	10-20	2.5	11.0	4.3	120.9	57.0
	22.0	20-30	2.6	7.0	3.3	82.9	33.5
		0-30	2.9	10.5	5.3	99.2	46.3
Глубокая отвальная	18.7	0-10	3.9	10.9	3.8	72.5	71.9
обработка	22.5	10-20	2.6	5.1	5.8	85.4	33.2
	21.7	20-30	2.4	5.9	5.9	107.6	20.7
		0-30	3.0	7.3	5.2	88.5	41.9
Ежегодная мелкая	13.4	0-10	2.0	13.6	10.2	59.3	27.7
обработка	20.6	10-20	2.4	2.3	2.1	108.2	61.7
	20.3	20-30	1.4	3.5	1.2	18.0	9.0
		0-30	1.9	6.5	4.5	61.8	32.8
Нулевая обработка	16.0	0-10	2.2	5.4	4.6	244.2	153.7
	24.0	10-20	2,6	8,1	10.5	70.1	24.3
	21.2	20-30	1,6	6.4	3.7	97.4	44.8
		0-30	2,1	6.6	6.3	137.2	74.2

В верхнем слое почвы при глубокой плоскорезной обработке почвы происходит накопление почвенных грибов и достигает 8.2 млн/г почвы, что способствует интенсивному процессу разложения растительных остатков. От того насколько интенсивно происходят процессы трансформации растительных остатков и обмен продуктов микробного метаболизма, зависит степень обеспеченности растений необходимыми элементами питания и энергией.

Отвальная обработка почвы усиливает размножение бактерий, ассимилирующих органический азот в количестве 3.9 и минеральный азот — 10.9 млн/г почвы в слое 0-10 см почвы, а концентрация на глубине 20-30 см растительных остатков способствует интенсивному развитию почвенных грибов и целлюлозоразрушающих микроорганизмов, которые составляют 5.9 и 107.6 тыс/г почвы соответственно.

Мелкое рыхление почвы на глубину 14 см также активизирует размножение бактерий, использующих минеральный и органический азот в слое 0-10 см. Их численность составляет 2.0 и 13.6 млн/г почвы, но в необработанных и уплотненных слоях при этой обработке активность их снижается до уровня 1.4 и 3.5 млн/г соответственно. Высокое содержание целлюлозоразрушающих микроорганизмов наблюдалось в слое 10-20 см (108.2 тыс/г почвы).

В условиях нулевой обработки поразительно высокое распространение показали целлюлозоразрушающие микроорганизмы в слое 0-10 cm - 244.2 тыс/г почвы.

Проведенные исследования показали, что в зернопаровом севообороте при глубокой плоскорезной обработке сосредоточение растительных остатков в верхнем слое 0-10 см обусловливает интенсивное размножение бактерий, усваивающих минеральные и органические формы азота. В слое 10-20 см особенно хорошо развиваются целлюлозоразрушающие микроорганизмы. Отвальная обработка почвы усиливает размножение почвенных грибов и бактерий, ассимилирующих органический и минеральный азот, а также целлюлозоразрушающих микроорганизмов в слое 20-30 см почвы, куда заделаны

растительные остатки. Мелкое рыхление почвы на глубину 14 см также активизирует размножение бактерий, использующих минеральный и органический азот в слое 0-10 см., высокое содержание целлюлозоразрушающих микроорганизмов наблюдалось в слое 10-20 см. В условиях нулевой обработки высокое распространение показали целлюлозоразрушающие микроорганизмы в слое 0-10 см.

- 1. Лихтенберг А.И. Оптимизация минерального питания зерновых культур в почвозащитном земледелии в черноземной зоне Северного Казахстана. Автореф. ...д. с-х. н. Алматы, 1995. 20с. 2. Лаврентьева Е.В., Семенов А.М., Зеленев В.В., Чжун Ю., Семенова Е.В., Семенов В.М., Намсараев Б.Б., А.К.Х. Ван
- 2. Лаврентьева Е.В., Семенов А.М., Зеленев В.В., Чжун Ю., Семенова Е.В., Семенов В.М., Намсараев Б.Б., А.К.Х. Ван Бругген. Ежедневная динамика целлюлазной активности в пахотной почве в зависимости от обработки // Почвоведение. 2009. №8. С.959-961.
- 3. Двуреченский В.И. Нулевые технологии обработки почвы в засушливой степи Казахстана // Материалы Межд. конф. «Ноу-тилл и плодосмен основа аграрной политики поддержки ресурсосберегающего земледелия для интенсификации устойчивого производства». Астана Шортанды. 2009. С.91-96.
- 4. Грибановский А.П. О некоторых аспектах нулевой обработки почвы при возделывании сельскохозяйственных культур в Казахстане // Вестник сельскохозяйственной науки Казахстана. 2002. №12. С.58-61.
 - 5. Красильников Н.А. Методы изучения почвенных микроорганизмов и их метаболитов. Москва. 1996. 210 с.

Жүргізілген зерттеулер нәтижесінде, терең қопсыту жүргізілетін дәнді-сүрі танаптың беткі 0-10 см қабатында минералды және органикалық азотты сіңіретін бактериялар белсенді түрде көбееді. 10-20 қабатта әсіресе целлюлоза ыдыратушы микроағзалар жақсы дамиды. Топырақты аудара өңдеу минералды және органикалық азотты сіңіретін топырақ саңырауқұлақтары мен бактериялардың, сондай-ақ өсімдік қалдықтары егізілген топырақтың 20-30 см қабатында целлюлоза ыдыратушы микроағзалардың көбеюін арттырады. Топырақты 14 см қабат тереңдікте ұсақ қопсыту 0-10 см қабатта минералды және органикалық азотты сіңіретін бактериялар санының жоғарылауын белсендендіреді. Целлюлоза ыдыратушы микроағзалардың көп жиналуы 10-20 см қабатта байқалды. Нөлдік өңдеу жағдайында целлюлоза ыдыратушы микроағзалар 0-10 см қабатта кең таралды.

Studies have shown that in grain-steam rotation during deep flat-cut processing concentration of plant residues in the upper 0-10 cm causes intense multiplication of bacteria assimilating mineral and organic forms of nitrogen. In the 10-20 cm layer is particularly well developed cellulose-decomposing microorganisms. Moldboard tillage enhances the proliferation of soil fungi and bacteria assimilating organic and mineral nitrogen, as well as cellulose-decomposing microorganisms in a layer of 20-30 cm of the soil where plant remains sealed. Shallow tillage of the soil to a depth of 14 cm is also activate the bacteria that use mineral and organic nitrogen in the layer 0-10 cm high content of cellulose-decomposing microorganisms were observed in the layer of 10-20 cm. under zero tillage showed high prevalence of cellulose-decomposing microorganisms in a layer of 0-10 see.

Г.Мунхцацрал*, О.Энхтуяа (Рh.D)**, С.Дэлгэрмаа (Рh.D)*

НЕКОТОРЫЕ РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ АНТИБАКТЕРИАЛЬНОГО ДЕЙСТВИЯ ЛИШАЙНИКА ВИДА *XANTHOPARMELIA CAMTSCHADALIS (ACH.) HALE*, СОБРАННОГО НА ТЕРРИТОРИИ МОНГОЛИИ

(*Монгольский Государственный университет науки и технологии, г.Улан-Батор, Монголия

*Институт пищевой инженерии и биотехнологии, г.Улан-Батор, Монголия

**Институт ботаники АН Монголии, г.Улаанбаатар)

В пустынной и полупустынной зоне Монголии распространены в основном лишайники, которые содержат пульвиновую, артранориновую кислоты, которые защищают его от яркого солнечного света. Как отмечают учёные [1], в нашей стране произрастают виды лишайников с богатым содержанием усниновой кислоты ($C_8H_{16}O_7$), которую используют в качестве сырья для производства некоторых видов антибиотиков. Например, такие виды как Alectoria ochroleucha, Cetraria cucullata, Cetraria islandica, Cetraria nivalis, Xanthoparmelia camtschadalis.

Цель данной работы – определение антибактериальной активности экстракта лишайника вида Xanthoparmelia camtschadalis (Ach.) Hale, подбор оптимального соотношения органических растворителей для экстрагирования усниновой кислоты. Перед нами были поставлены следующие задачи:

- 1. Сбор наземной части лишайника, подготовка водного, спиртового раствора растения, подбор органических растворителей.
- 2. Определение антибактериальной активности растворов, подбор оптимального соотношения растворителей.

Результаты исследования