- 11 Сарсенбаев К.Н., Барамысова Г.Т., Джиембаев Б.Ж., Кожамжарова Л.С., Исабаев С.О., Колосова Н.Г., Иманбаева А.А. Морфологические и биохимические особенности казахстанских популяций цистанхе сомнительной // Химический журнал Казахстана. 2009. №1. С. 122-136.
- 12 Сарсенбаев К.Н., Барамысова Г.Т., Джиембаев Б.Ж., Кожамжарова Л.С. Новое полезное растение флоры Казахстана – цистанхе сомнительная // Химический журнал Казахстана. – 2009. - №1. - С. 5-10.
- 13 Исабаев С.О., Сарсенбаев К.Н., Колосова Н.Г. Расширение экспортного и фармакологического потенциала путем реализации сырья и биологически активных веществ из ценных растений флоры Казахстана цистанхе сомнительной и солончаковой //Экономические механизмы инновационной экономики: сб. науч. тр. Международн. науч.-практ. конф. СПб.: НОУ МИЭП. 2009. ч. 2. С. 44-45.
- 14 Isabaev S.O., Sarsenbayev K.N., Fursova A.J, Lomovsky O.I., Kolosova N.G. *Cistanche deserticola*: a novel approach for traditional medicinal plant //III International Conference Fundamental Bases of Mechanochemical Technologies. Novosibirsk, Russia. 2009. P. 60.
- 15 Исабаев С.О., Сарсенбаев К.Н., Барамысова Г.Т., Джиембаев Б.Ж., Кожамжарова Л.С., Колосова Н.Г., Иманбаева А.А. Столоны цистанхе новый источник биологических веществ. Сообщение 1 // Химический журнал Казахстана. 2010. № 1 С 195-201
- 16 Исабаев С.О., Сарсенбаев К.Н., Барамысова Г.Т., Джиембаев Б.Ж., Кожамжарова Л.С., Колосова Н.Г., Иманбаева А.А. Исследование химического состава столона у различных популяций цистанхе. Сообщение 2 //Химический журнал Казахстана. 2010. № 1. С. 202-215.
- 17 Капсалямова Э.Н. Разработка состава и технологии лекарственной формы на основе полифенольных соединений *Cistanche salsa* (C.A. Mey.) G. Beck. Автореф. ...канд. фарм. наук. Алматы., 2010. 24 с.
 - 18 Строганов Б.П. Метаболизм растений в условиях засоления.-М.: Наука. 1973.- 51 с.
- 19 Государственная фармакопея. Общие методы анализа. Лекарственное растительное сырье. 11 издание. М.: Медицина. 1991. 400 с.
- 20 Музычкина Р.А., Корулькин Д.Ю., Абилов Ж.А. Качественный и количественный анализ основных групп БАВ в лекарственном растительном сырье и фитопрепаратах . Алматы: Казак Университеті. 2004.- 284 с.

УДК 582.26

А.С. Кистаубаева*, А.А. Жубанова, И.С. Савицкая, Н.Ш. Акимбеков, М. А. Абдулжанова Казахский национальный университет имени аль-Фараби, г. Алматы, Казахстан *e-mail: aida kaz@mail.ru

Получение сорбированного пробиотика-биокомпозита иммобилизацией клеток *Bacillus subtilis* ж-16 на поверхности карбонизованной рисовой шелухи

Определена эфффективность сорбции и подобраны условия для осуществления эффективной сорбционной иммобилизации вегетативных клеток бактерий Bacillus subtilis Ж-16 на поверхности карбонизованной рисовой шелухи.

Ключевые слова: Сорбция, иммобилизация, биокомпозит

A.S. Kistaubaeva, A.A. Zhubanova, I.S. Savitskaya, N.Sh. Akimbekov

Production of sorbed probiotic – biocomposite by immobilization of bacillus subtilis g-16 on carbonized rice husk surface

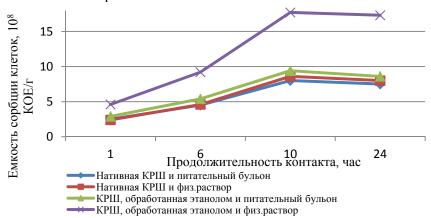
Efficiency of sorption has been defined and conditions for implementation of effective sorption immobilization of vegetative Bacillus subtilis G-16 cells on the surface of carbonized rice husk have been carried out.

Keywords: sorption, immobilization, biocomposite

Кистаубаева А.С., Жубанова А.А., Савицкая И.С., Акимбеков Н.Ш.

Карбонизделген күріш қауызының бетіне иммобилизденген bacillus subtilis ж-16 клеткаларынан сорбцияланған пробиотик-биокомпозит алу

Bacillus subtilis Ж-16 бактерияларының вегетативті клеткаларының сорбциялық иммобилизациясының эффективті жүргізу жағдайлары таңдалып, сорбцияның эффективтілігі анықталған.


Түйін сөздер: Сорбция, иммобилизация, биокомпозит

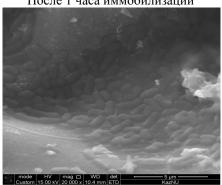
Пробиотики, иммобилизированные на сорбентах, по своей эффективности превосходят широко распространенные в настоящее время жидкие формы или сухие концентраты пробиотических культур [1, 2]. Преимущество таких биокомпозитов в синергическом действии микробной (антагонистическая активность в отношении патогенной микрофлоры и протеолитическое действие) и сорбционной (детоксикационное (детоксикационное действие и защита клеток микробовантагонистов) составляющих [3].

Для получения биокомпозита проводили адсорбционную иммобилизацию вегетативных клеток штамма *Bacillus subtilis* Ж-16 на сорбент – карбонизованную рисовую шелуху (КРШ). Рассчитывали показатели эффективности этого процесса и анализ факторов, влияющих на степень закрепления клеток на поверхности носителя. Такими факторами в предпринятом эксперименте служили: время контакта клеток с сорбентом, его предварительная специальная обработка и условия проведения иммобилизации (в питательной среде или физиологическом растворе) [4].

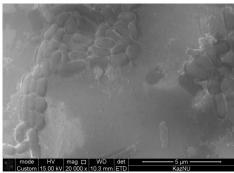
Процесс иммобилизации проводили при температуре 20^{0} С и рН 6,0 после предварительной стерилизации сорбента в автоклаве. Для более полного контакта сорбента с клетками флаконы с бактериальной суспензией и сорбентом периодически встряхивали на шуттель-аппарате. Эффективность сорбции бактерий рассчитывали по разнице концентраций клеток микроорганизмов в культуральной среде до и после сорбционного процесса. Результаты этого эксперимента представлены в таблице 1.

Характер изменений значений емкости сорбции свидетельствует о постепенном приросте биомассы клеток *B. subtilis* Ж-16 на сорбенте уже начиная с 1 - 6 часового контакта, что приводит к снижению количества суспендированных клеток. Уже к 10 часам эксперимента изменение концентрации клеток на носителе достигает плато, которое измеряется динамическим балансом между сорбцией и откреплением клеток, т.е. зависит от действия сил десорбции. Т.е. дальнейшее увеличение времени контакта суспензии микроорганизмов с носителем не приводило к возрастанию количества прикрепившихся клеток (Рисунок1). На основании полученных данных можно сделать вывод, что 10 часов - оптимальное время для иммобилизации клеток *B. subtilis* ЖК-16 на КРШ в условиях проведенного нами эксперимента.

Рисунок 1 – Динамика сорбции клеток *Bacillus subtilis* ЖК-16 на поверхности КРШ


Таблица -	- Сорбиия клеток	Bacillus subtilis Ж-16 на КРШ
таолица -	– Сороция клеток	Ducillus subillis AC-10 Ha KI III

Tuominga Copognia kiletok Duettus suottus ak 10 ha Ki Hi			
Условия эксперимента	Исходная концентрация	Максимальная	
	клеток в суспензии, 10 ⁸ КОЕ/мл	эффективность сорбции, %	
Нативная КРШ и питательный бульон	25±1,9	32	
Нативная КРШ и физ.раствор	20±1,5	43	
КРШ, обработанная этанолом и	18±1,4	52	
питательный бульон			
КРШ, обработанная этанолом и физ.раствор	23±2,4	77	


Оңтүстіктік, қызылордалық және солтүстіктік қыздардың қанындағы лейкоциттердің орташа мөлшері семестрдің басында ҚӨК-сіз бақылауларда тиісінше $(5,8\pm0,5)$, $(5,5\pm0,5)$ және $(5,8\pm0,3)$ х 109^9 /л тең болса, тыныс жаттығулары жүргізілген эксперимент тобында $(5,6\pm0,5)$, $(5,7\pm0,4)$ және $(5,6\pm0,7)$ х 109^9 /л көрсетті. Семестрдің соңында ҚӨК-сіз топта олардың мөлшері оңтүстіктің қыздарында өзгермесе, қызылордалықтарда 1,8%-ға көтеріліп, солтүстіктік қыздардарда 1,7%-ға төмендеді, ал ҚӨК-ті топта барлық жағдайда да тиісінше 5,4,1,8 және 1,8%-ға төмендеді. Семестрдің соңындағы ақ қан клеткаларының мөлшері оңтүстіктік, қызылордалық және солтүстіктік қыздарда ҚӨК-сіз бақылауларда тиісінше $(5,8\pm0,5)$, $(5,6\pm0,5)$ және $(5,7\pm0,3)$ х 109^9 /л тең болса, тыныс

жаттығулары жүргізілген эксперимент тобында $(5,29\pm0,5)$, $(5,59\pm0,4)$ және $(5,49\pm0,7)$ х 109^{9} /л тең болды (сурет 1).

После 24 часов иммобилизации

Рисунок 2 – Электронограмма поверхности КРШ с клетками B. subtilis Ж-16

ч

Электронно-микроскопическое исследование образовавшейся на поверхности КРШ биопленки, позволило обнаружить микроколонии *B. subtilis* Ж-16, что также подтверждало факт их успешной иммобилизации на поверхности сорбента (Рисунок2).

Таким образом, итогом проделанной работы является получение композитного материала на основе сорбента КРШ с закрепленными на нем клетками B. subtilis ЖК-16 в количестве $(4\pm2)x10^8$ микробных тел в 1 г.

Литература

- 1. Волков М.Ю. Эффективные формы пробиотиков, иммобилизованных на природных адсорбентах // Пищевые ингридиенты. Сырье и добавки. 2007. №1. С.48-51.
- 2. Решетников В.И. Разработка лекарственных форм препаратов с иммунобиологической и сорбционной активностью //Фармация. 2002. №5. С. 40-44.
- 3. Авдеев В.Г. Пробиотики и пребиотики в лечении заболеваний желудочно-кишечного тракта // Клиническая фармакологи и терапия. 2006. В. 15. №1. С. 36-40.
 - 4. Bhinu V.S. Insight into biofilm-associated microbial life. J. Mol. Microbiol. 2005. Vol. 3. P. 197-214.
- 5. Zhu Y., Smits J.P., Knol W., Bol J. A novel solid-state fermentation system using poliuretane foam as inert carrier // Biotechnol. Lett. 1994. -Vol. 16, №6. C. 643-648.
- 6. Курдиш И.К. Взаимодействие микроорганизмов с твердыми материалами и его биотехнологическое значение // Микробиологический журнал. − 1999. Т. 61, № 1. С. 60-73.