Махмудова Г.С., Кебекбаева К.М., Джобулаева А.К. ВЛИЯНИЕ УСЛОВИЙ ХРАНЕНИЯ НА ЖИЗНЕСПОСОБНОСТЬ ПОПУЛЯЦИИ АКТИНОМИЦЕТОВ-ПРОДУЦЕНТОВ АНТИБИОТИКОВ

Институт микробиологии и вирусологии, г. Алматы

Изучение изменчивости микроорганизмов имеет значение для повышения продуктивности штаммов, используемых в пищевой и медицинской промышленности, ветеринарии, животноводстве и сельском хозяйстве. Процесс хранения предусматривает непостоянство условий внешней среды, что ведет к изменению характерных признаков, состава популяции, соотношения высокоактивных и низкоактивных форм.

Актиномицеты обладают повышенным разнообразием морфологии: каждая популяция содержит клетки, отличающиеся морфологическими, биохимическими свойствами. Такая изменчивость позволяет быстро приспосабливаться к изменению условий среды и сроков хранения.

Наследственная изменчивость актиномицетов подчиняется закону гомологических рядов [1, 2]. В популяциях любых видов, наряду с основной формой, существуют варианты: олигоспоровые, аспорогенные, карликовые, нокардиоподобные, окрашенные. Ряды изменчивости возрастают за счет появления дополнительного отличительного свойства-биосинтеза антибиотиков. Степень проявления процесса изменчивости зависит от генетической природы организма и условий внешней среды. При лиофилизации и криоконсервации возникновение спонтанных мутаций не исключено. По данным Р.С. Орловой [3], после лиофилизации в популяции продуцента антибиотика розеофунгина преобладали высокоактивные варианты. Иногда после лиофилизации соотношение вариантов может оставаться почти неизменным, что, возможно, связано с защитным действием высокой концентрации клеток в лиофилизированной суспензии спор [4].

В проведенных исследованиях изучали влияние условий хранения с помощью лиофилизации на жизнеспособность членов популяции и проявление биологической активности.

Материалы и методы

Для исследования взяты два актиномицета: Streptomyces roseoflavus Arai шт. 23/791-продуцент антибиотика розеофунгина [5], и S. antibioticus шт. 25/779 - продуцент кормового препарата, содержащего антибиотик и витамины группы В [6].

Для хранения актиномицетов использовали общепринятые среды с агаром: Гаузе - 1, Гаузе - 2, Чапека с глюкозой, Чапека с сахарозой, кукурузная - 6, рыбная - 51.

Культуры хранились в лиофилизированном состоянии общепринятым методом (высушивание замороженных клеток по вакуумом). Реактивацию проводили в оптимальных средах, при наиболее подходящей для каждой культуры температуре.

Для подсчета выживаемости актиномицетов использовали общепринятый метод. Культурально- морфологические признаки определяли по росту и развитию на разных питательных средах. Учитывали форму, величину и консистенцию колоний, образование растворимого пигмента (окраска питательной среды). Цвета определяли по шкале А.С. Бондарцева [7], обозначения в тексте приводятся в скобках. Размеры и формы микробных клеток и спор, поверхность оболочки, строение органов плодоношения изучали с помощью электронного и светового микроскопов.

Антибиотическую активность продуцентов изучали методом серийных разведении и диффузии в агар, тест-организмы -согласно регламентам, разработанным авторами по каждому новому антибиотику. Концентрацию витаминов группы В определяли методом диффузии в агар [8]. Состав популяции изучали по методу, рекомендованному В.Д. Кузнецовым [I].

Результаты и обсуждение

На питательных средах исходная культура 23/791 образовывала 4 типа колоний, различающихся по морфологии, окраске воздушного и субстратного мицелиев и антибиотической активности:

- I ОСНОВНОЙ колонии с неровными без наплавы краями, воздушный мицелий бледно-розоватый, бархатистый (н 5). Субстратный желтовато-коричневый (д 4).Среда не окрашена.
- II ОЛИГОСПОРОВЫЙ колонии с неровными без наплавы краями, воздушный мицелий слегка белорозоватый в виде налета (н 5). Субстратный табачно-бурый (д 7). Пигмент слегка диффундирует в среду.
- III МЕЛКИЙ колонии с точечным центром и воздушный мицелий бледно-розоватый (н 5). Субстратный мицелий желтовато-буроватый (д 4). Пигмент не диффундирует в среду.
- IV СЕКТОРНЫЙ колонии с мучнисто-розовым центром и воздушный мицелий бледно-розоватый (н 5). Субстратный мицелий- желтовато-буроватый (д 4). Пигмент не диффундирует в среду.

В таблице 1 представлены данные антибиотической активности колоний разного типа.

Как видно из таблицы 1, в составе популяции исходной культуры встречались колонии I и IV типа с разной антибиотической активностью.

Таблица 1 - Состав популяции исходной культуры шт. 23/791

аолица 1 - Состав популяции исходной культуры шт. 25/71						
Средства для высева	Тип колоний	Количество колоний, %	Антибиотическая			
			активность, ед/мл			
Чапека с глюкозой	I	100	1024			
Гаузе - 1	I	50,8	1024			
	II	36,0	729			
	III	8,7	2187			
	IV	4,5	1024			
Кукурузная - 6	I	90,0	2187			
Рыбная - 51	II	7,0	729			
	III	3,0	729-2187			
Рыбная - 51	I	95,0	243-2187			
	II	2,5	729			
	III	2,5	729			

В составе популяции лиофилизированной культуры колоний III и IV типа не обнаружено, за исключением рыбной -51 (табл. 2). Как видно из таблицы, в популяции преобладал основной вариант с низкой антибиотической активностью (9-1024 ед/мл), а на кукурузной обнаружен новый тип колоний – V, активность которого была выше исходной – 4374-6561 ед/мл.

Таблица 2 - Состав популяции лиофилизированной исхолной культуры шт. 23/791 на разных средах

аолица 2 Состав популяции этофизизированной исходной культуры шт. 25/171 на разных средах						
Средства для	Тип	Количество	Антибиотическая	Примечание		
высева	колоний	колоний, %	активность, ед/мл			
Чапека с	I	99,7	243-729	Типичный		
глюкозой	II	0,3	729			
Гаузе - 1	I	98,6	27			
	II	1,4	2187			
Кукурузная -	I	50,0	9	Окраска бледнее, чем у исходной культуры		
6	V	50,0	4374-6561	Гладкие плоские колонии с ободком, в		
				колония бар-хапистая, воздушный мицелий —		
				телесный, субстратный-темно-бурый		
Рыбная - 51	I	62,8	1024			
	II	31,4	243	Воздушный мицелий серовато-желтый.		
	III	5,8	27	Колонии радиально-складчатые		

Примечание: описание I - III типов колоний даны выше.

Таблица 3 - Культурально-морфологическая изменчивость и процент встречаемости штамма 25/779 на соевой среде

Тип колоний	Морфологические варианты (колонии)	Встречаемость в рассеве		Активность	
		Кол-во колоний,	%	Антибио- тическая,	Вита- минообр.,
		МЛН.		ед/мл	мкг/мл
I	Основной тип с серым бархатистым воздушным мицелием (в 4), колонии с ровными краями, складчатые, окрашены в грязно- рыжевато-серый цвет (н 1), среда не окрашена.	50	54,4	2,32	0,7-1,5
II	Колонии с ровным краем, радиально- складчатые, воздушный мицелий черновато-бурый (в 4), субстратный мицелий рыжеватый (ж 2).	30	32,6	16,0	1,0
III	Плоские колонии с желтовато-серым воздушным мицелием 9 в 3), субстратный мицелий буровато-желтый (б 5).	12	13,0	2,0	0,3

Следующие исследования проведены с продуцентом кормового препарата S. antibioticus шт. 25/779 и его вариантом, хранившихся в течение 2,5 лет на соевой среде и в виде лиофильно высушенных спор.

Наименьшая морфологическая изменчивость исходной культуры этого штамма наблюдалась на соевой среде с образованием 4 морфологических вариантов, у варианта 24 антибиотическая активность культуральной жидкости составляла 32 ед/мл и витаминообразование - 1.1 мкг/мл.

В серии опытов изучали естественную изменчивость данного варианта на 4-х питательных средах. Наши исследования подтвердили, что на соевой среде вариант 24 образует 3 типа колоний (таблица 3).

Установлено, что вариант 24 на соевой среде после лиофилизации образует 5 различных типов колоний. У всех вариантов способность синтезировать витамин резко снизилась, антибиотическая активность осталась в двух случаях в пределах исходной, в одном – повысилась до 128 ед/мл (таблица 4). У двух вариантов III и IV обнаружена практически нулевая активность.

Таблица 4 - Морфологическая изменчивость популяции лиофилизированной культуры штамма 25/779 на соевой среде (периодичность – 3 года)

Тип Морфологические варианты штамма колоний (колонии)		Встречаемость в рассеве		Активность	
колонии	(колонии)	Кол-во	%	Антибио-	Вита-
		колоний,		тическая,	минообр.,
		МЛН.		ед/мл	мкг/мл
I		110	51,6	32	0,3
II		62	29,1	32	0,4
III		27	12,6	0	0,1
IV	Карликовые, плоские, серые с более	12	5,6	128	0,4
	светлым ободком вокруг колонии,				
	воздушный мицелий буровато-серый				
	(б4-в4). Субстратный мицелий бурый				
	(~к 7), пигмент рыжеватый,				
	диффундирует в среду.				
V	Концентрические, плоские в центре, воздушный	2	0,9	0	0,1
	мицелий серый (в 4), ободки светло-серые, край				
	темно-серый, радиально-складчатый.				
	Субстратный ми-целий темно-серый (а2).				

Примечание: описания I,II, III типов колоний этого штамма даны в таблице 3.

Наибольшая гетерогенность культуры проявилась на среде Гаузе 1, типы колоний сгруппированы на 12 морфологических вариантов (таблица 5).

Варианты различаются по культуральным свойствам, по антибиотико- и витаминообразованию. Почти все варианты характеризовались хорошей биосинтетической деятельностью, варианты V, VI и IX превосходили исходной штамм по синтезу витамина и антибиотика в 1,5 - 2 раза.

Основной тип колоний с исходной активностью составлял 48,2%, высокоактивные типы(V, VI и IX) встречались в 19,2, 6,4 и 5,1% случаев соответственно. Вариант, синтезирующий витамины в незначительном количестве (0,23 мкг/мл) составлял 14,1% популяции и не продуцировал антибиотик.

Таблица 5 - Морфологическая изменчивость популяции лиофилизированной культуры штамма 25/779 на среде

Гаузе 1 (периодичность – 3 года)

Тип	Морфологические варианты	Встречаемость в рассеве		Активность	
колоний	(колонии)	Кол-во колоний, млн.	%	Антибио- тическая, ед/мл	Вита- минообр., мкг/мл
I		38	48,7	2-32	0,3-1
II		11	14,1	0	0,2
III		4	5,1	2-16	0,8-1,5
IV		4	5,1	2-64	0,8-1,5
V		15	19,1	2-64	0,8-2
VI	Как у II типа, но воздушный мицелий черный (a1) с небольшим количеством серого воздушного мицелия.	5	6,4	32-64	0,8-2
VII	Воздушный мицелий оранжеворозовый (г4), субстратный ми-целий желто-оранжевый (д2), пигмент оранжевый, диффун-дирует в среду.	2	1,2	32	1,3
VIII	Как I тип, но субстратный мицелий черный. Воздушный мицелий светлосерый с оранжевым оттенком (a1), желтовато-серый (в3).	1	1,2	32	0,7-1,2
IX	Колония в виде розеточек с углубленным центром. Воздушный мицелий оран-жевый (о3), субстратный ми-целий серый (в4).	4	5,1	32-128	0,8-2,0
X	Как IX, но центр бугристый	5	6,4	8-64	0,5-1,0
XI	Как IX, но центр конусом оранжевого цвета, радиально-складчатый, но субстратный мицелий бурый (~к 7), пигмент оранжевый, диффундирующий в среду.	5	6,4	8-64	0,3-1,0
XII	Колонии концентрические, воздушный мицелий светло-и темно-серого цвета (а2).	5	6,4	64-128	0,5-1,0

Примечание: описание I –V типов колоний дано в таблицах 3 и 4.

Таким образом, установлено, что в процессе хранения у изученных продуцентов изменялся состав популяции, выявляются различные по жизнеспособности, культуральноморфологическим признакам и биосинтетической активности типы колоний. Морфологическая вариабельность данных штаммов находится в прямой зависимости от состава питательных сред. Для длительного поддержания штамма 23/791 рекомендуется среда Чапека с глюкозой, для получения активных форм — кукурузная 6. Штамм 25/779 хранится на соевой среде, а селекция активных вариантов проводится на среде Гаузе 1.

Литература

- 1. Кузнецова В.Д. Гомологические ряды наследственной изменчивости//Антибиотики. 1993. №7. С. 579.
- 2. Кузнецова В.Д., Сабиров с., Филиппова С.Н. Изучение популяционного состава Actinomyces tumemacerans, Actinomyces albus var.fungatus // Микробиология. 1990. Т. 67. 6. С. 1073.
- 3. Орлова Р.С. Влияние некоторых методов хранения на актиномицеты-продуценты новых антибиотиков //Тр. Ин-та микробиол. и вирусол. АН КазССР. Алма-Ата, 1994.
- 4. Кузнецова В.Д., Бушуева Д.Л. Влияние лиофилизации на выживаемость спор актиномицетов продуцентов стрептомицина и микомицина //Антибиотики. 1993. №10. С. 89.
- 5. Кулдыбаев М.М. Новый актиномицет-продуцент антибиотика для растеновдства// Вестник АН КазССР. 1988.№3.С.63-69.
- 6. Сартабаева У.А., Фролова Л.Ф., Балицкая А.К. и др. Витамины группы В, продуцируемые актиномицетами// Тр. Ин-та микробиол.и вирусол. АН КазССР. Алма-Ата, 1981. Т. 17. С. 10-17.
 - 7. Бондарцев А.С. Шкала цветов. M.-Л.: Изд-во AH СССР, 1954. 27 с.
- 8. Чайковская С.М., Дружинина Е.Н., Упрощенный чашечный метод определения концентрации витамина B_{12} // Микробиология 1987. Т. 26, вып. 5. С. 609-613.

Түйін

Алынған нәтижелердің қорытындысына қарағанда, лиофилизация әдісімен сақаталынған розеофунгин тектес антибиотикті бөліп шығарып Streptomyces roseoflavus Arai шт. 23/791 және азықтық препаратты бөліп шығаратын S. antibioticus шт. 25/779 олардың популяция құрамының өзгеретіндігі анықталған. Биосинтетикалық белсенділігі және дақылды-морфологиялық белгілерімен және тіршілікке қабілеттілігі бойынша ерекшеленетін колониялардың типтері анықталынды. Штаммдардың морфологиясының қоректік ортаның құрамына тікелей байланысты екендігі айтылған.

Summary

It was established that keeping roseofungin like type antibiotic producer Streptomyces roseoflavus Arai 23/791 and producer of a fooder preparation S. antibioticus 25/779 in liophylized state changes population structure. Types of colonies, varying on viability, cultural-morphological attributes and biosynthetic activity are revealed. Morphological variability of depends on composition of nutritional media.

УДК 547.814 542.48 615.46

Поляков В.В. 1 , Соболевский П.А. 1 , Адекенов С.М. 2 ФИТОПРЕПАРАТ «КЭМПОЛ» ДЛЯ ЛЕЧЕНИЯ ЛЕКАРСТВЕННО-РЕЗИСТЕНТНЫХ ФОРМ ТУБЕРКУЛЕЗА ЛЕГКИХ

¹ Северо-Казахстанский государственный университет, г. Петропавловск, Казахстан, vpolyakov44@rambler.ru

² АО «Международный научно-производственный холдинг «Фитохимия»

Ежегодно 24 марта во всем мире проводится День борьбы с туберкулезом. Именно в этот день в 1882-м году в Берлине доктор Роберт Кох объявил об открытии этой страшной болезни, которая до сих пор угрожает каждому из нас.

В Алматы состоялся международный семинар по вопросам борьбы с туберкулезом. Это инициатива правительства Казахстана. Казахстан за последние годы проявил себя в качестве лидера в реализации программ по борьбе с туберкулезом.

Как отметили на семинаре, борьба с туберкулезом — приоритетное направление современной медицины. Врачи считают, что самая опасная форма этого заболевания - туберкулез с «множественной лекарственной устойчивостью». Он не поддается лечению наиболее распространенными препаратами. Согласно данным Всемирной Организации Здравоохранения этой формой туберкулеза страдают почти 15 процентов всех больных в центрально-азиатском регионе. За январь-сентябрь 2010 года в Казахстане уровень заболеваемости туберкулезом снизился по сравнению с аналогичным периодом прошлого года со 126,4 случаев до 110,7 на 100 тыс. населения, констатируют в министерстве здравоохранения.

Анализ эпидемиологической ситуации по туберкулезу в гражданском секторе здравоохранения страны по итогам девяти месяцев также снижен показатель смертности от туберкулеза: если в 2008 году на 100 тыс. человек было зарегистрировано порядка 17 случаев, то в 2010 году — чуть более 12 фактов на 100 тыс. человек, указывается в пресс-