к следующему дню наблюдался подъем значений близких к первоначальным. После 5 процедур МПКС наблюдалась нормализация АД. У лиц с пониженным артериальным давление через 1-3 мин после каждого акта резонансной активации солнечного сплетения происходило повышение АД на 5-10 единиц, но к следующему дню наблюдалось снижение почти до величины фонового значения и к показания нормы приближалось после пяти процедур. У группы женщин принимавших процедуры МПКС в течение 1-2 дня первого курса резонансной фотоактивации отмечались жалобы на легкое головокружение, которые впоследствии исчезали. Считается, что в основе механизма действия излучения лежит эффект резонансной активации поляризованной волной внутриклеточных структур, а возбуждение биофизических и биохимических процессов в организме, отражается на функциональном состоянии организма в целом и, в частности, на сердечно-сосудистой системе /1/.

Таблица 1 - Динамика показателей систолического давления, групп обследуемых женщин при дозированном голодании на фоне резонансной фотоактивации в зависимости

от индивидуального годового цикла

Месяцы	Систолическое давление (мм.рт.ст.)				
	1 день	2день	3день	4 день	5 день
	контрольный	15 часов	36 часов		
		голодания	голодания		
I	102±3,33	97±4,41	100±2,89	98±3,34	100±3,3
II	117±1,67	103±3,4*	110±2,89*	107±4,41*	106±4,4*
III	96±1,0	97±1,67	100±2,89	102±3,6*	106±3,26*
IV	109±1,67	108±1,36*	112±2,0	109±2,45	117±2,3*
V	118±3,39	108±4,36*	112±2,0*	109±2,45*	109±2,45*
VI	120±2,89	123±4,41	120±2,89	113±4,26*	115±4,64*
VII	121±2,39	116±3,75*	113±3,23*	112±4,06*	118±2,39
VIII	115±5,0	112±3,3	113±4,41	112±3,3	110±2,89*
IX	117±4,41	108±4,4	117±4,3	105±2,89*	116±4,3
X	116±1,0	113±4,4	116±1,8	108±3,34*	116±1,0
XI	110±5,0	106±4,41	114±3,45	100±2,89*	102±4,26*
XII	133±1,44	128±4,79	127±2,5*	126±3,75*	124±4,27*
P: *		P≤0,05	P≤0,05	P≤0,05	P≤0,05

В таблице 2 представлена динамика средних значений диастолического давления за пять дней, где 1-й день показания контрольных измерений, которые сравнивались с теми, которые были получены во время голодания и в восстановительные дни при проведении ежедневных процедур МПКС.

Таблица 2 - Динамика показателей диастолического давления, групп обследуемых женщин при дозированном голодании на фоне резонансной фотоактивации

в зависимости от индивидуального годового цикла

Месяцы	Диастолическое давление (мм.рт.ст.)					
	1 день	2день	3день	4 день	5 день	
	контрольный	15часов	36часов			
		голодания	голодания			
I	67±1,67	62±1,68	65±5,0	62±1,67	63±1,77	
II	73±4,4	63±3,3*	76±1,8	72±1,7	72±2,0	
III	62±1,7	63±2,0	67±3,3	68±3,3	70±2,6	
IV	70±2,89	68±2,0	66±2,92	70±3,16	69±2,45	
V	75±2,24	68±2,0	66±2,92	70±3,16	69±2,42	
VI	76±4,41	72±4,26	68±1,67*	67±3,3	73±4,4	
VII	79±1,25	68±4,27*	68±3,23 *	68±1,41	74±2,39	
VIII	70±4,4	68±1,67	65±1,04*	70±2,89	67±1,45	
IX	72±1,7	73±3,4	72±4,41	68±1,67	73±2,56	
X	72±2,28	70±0,56	67±4,4*	71±4,01	72±1,67	
XI	65±2,89	65±1,89	78±2,59	68±3,34	66±4,4	
XII	82±1,44	78±3,15	78±3,31	70±2,04	74±2,39	
P: *		P≤0,05	P≤0,05	P≤0,05	P≤0,05	

Сравнительный анализ средних показателей артериального давления в различные месяцы ИГЦ при дозированном голодании на фоне процедур резонансной фотоактивации, показывает небольшие отклонения от контрольных измерений и в восстановительные дни после ДГ отмечалось выравнивание показателей к норме. В начальный этап адаптации при исключении пищи в течение 36 часов организм приспосабливается к наиболее

экономным тратам энергии и дополнительная энергия квантов красного света резонансной фотактивации положительно сказывается на активацию этих процессов. В таблице 1 представлена динамика средних значений систолического давления за пять дней, где 1-й день показания контрольных измерений, которые сравнивались с теми, которые были получены во время голодания и в восстановительные дни при проведении ежедневных процедур МПКС.

Данные обследований свидетельствуют, о сглаживании стресса при голодании и нормализации показателей артериального давления, как в дни дозированного голодания так и восстановительные дни.

У групп исследуемых с артериальной гипертензией в двенадцатом месяце ИГЦ после 36 голодания наблюдалось понижение систолического от $133\pm1,44$ до $127\pm2,5$ (мм.рт.ст.) и диастолического давления $82\pm1,44$ до $78\pm3,15$ (мм.рт.ст.)

Для групп с артериальной гипотензией в первый месяц ИГЦ через 15 часов отсутствия пищи отмечается достоверное снижение характеризующейся незначительным снижением систолического давления 102±3,33 до 97±4,41 (мм.рт.ст.) и диастолического давления 67±1,67 до 62±1,68 (мм.рт.ст.), После голодания в восстановительные дни показатели артериального давления приближаются к норме в пределах средних величин для всех месяцев ИГЦ, то есть голодание протекает по нормотоническому типу реакции сердечно-сосудистой системы. Наиболее отчетливый непосредственный гипотензивный эффект наблюдался у лиц с артериальной гипертензией.

Таким образом, отмечается положительное воздействии ежедневного 30-ти секундного воздействия МПКС на рефлексогеннные зоны кожи подошв и ладоней на деятельность системы кровообращения организма человека. Это соответствует предыдущим научным данным по воздействию МПКС, что наиболее гипотензивный эффект наблюдается у больных после 30-ти секундного воздействия МПКС с диапазоном волн 630-650нм.[1] Наряду со снижением артериального давления при такой же экспозиции, наступало снижение артериального тонуса и имелась тенденция к урежению частоты пульса, что способствовало улучшению общего состояния больного.

Статистический анализ динамики показателей частоты сердечных сокращений (ЧСС) за пять дней в каждом месяце ИГЦ на фоне МПКС проведен в таблице 3. Пульс снижается при голодании и стабильные достоверные различия ($P \le 0.05$) отмечаются для всех месяцев ИГЦ на 4-5 день .

Таблица 3 - Динамика показателей частоты сердечных сокращений в минуту, групп обследуемых женщин при дозированном голодании на фоне резонансной фотоактивации

3.5		в зависимости от ин		·	
Месяцы		Частота сер	дечных сокращени	й в минуту	
	1 день	2 день	3 день	4 день	5 день
	контрольный	15 часов	36 часов		
		голодания	голодания		
I	82,0±3,06	78,7±1,33	75,3±5,33 *	76,67±1,76*	75,3±2,91*
II	80,7±0,67	73,3±3,4*	75,3±2,4*	76,0±1,15	75,0±1,76*
III	82,0±2,0	81,3±1,3	79,3±5,21	82,6±6,36	72,7±2,67*
IV	83,3±3,3	80,67±0,67	77,3±2,67*	76,7±3,33*	66,6±3,33**
V	86,6±1,54	85,2±3,01	82,8±6,09	74,0±2,45*	74,0±2,15*
VI	86,7±3,3	84,67±2,4	84,0±3,06	80,7±0,67*	80,3±1,20*
VII	81,5±1,5	78,5±2,63	78,5±0,96	76,0±2,16*	76,0±1,15*
VIII	78,0±3,06	76,7±3,4	73,3±3,33	72,6±1,76*	70,0±1,15*
IX	80,0±1,15	78,6±0,67	79,3±0,67	76,0±3,06	75,67±2,19*
X	80,0±5,77	79,0±1,0	77,67±3,93	78,3±2,03	75,0±1,53*
XI	80,0±2,31	72,7±3,7*	78,6±1,33	76,0±3,21	72,67±3,7*
XII	82,0±1,15	78,0±0,82	78,5±0,96	73,5±0,96*	73,0±1,29*
P: *		P≤0,05	P≤0,05	P≤0,05	P≤0,05

Из данных таблицы видно, что при голодании на фоне МПКС наблюдается сглаживания колебания снижения показателей ЧСС и достоверное изменения Р≤0,05 отмечаются в восстановительные дни для всех месяцев ИГЦ, как проявление выраженного стимулирующего действия МПКС в нормализации функции дыхания.

Голодание вызывает схожие реакции, направленные на адаптацию к новым условиям отсутствия пищи, урежению частоты дыхания. После каждой процедуры МПКС через 1-3 мин не наблюдалось изменений частоты дыхания. При голодании изменение ЧД отмечалось через 15-18 часов и сохранялась в пределах нормы в течение восстановительных дней. Дыхание становится спокойным и более глубоким, в течение всего периода наблюдений чему способствовало стимулирующее действие монохроматического поляризованного красного света. Достоверные изменения (Р≤0,05) ЧД наблюдались у лиц с учащенным дыханием с 28,8±0,8 до 20,8±0,8 после 36 часов ДГ и после пяти дней МПКС снизилось до 16,0±1,41 (Р ≥0,05). У группы лиц с нормальной частотой дыхания в минуту с величиной средних значений 18,67±0,67 снижения показателей отмечались при воздержании от пищи через 15 часов и составляли 14,67±0,67 и приближались к исходным значения на 4-5 день составляя

18,3±0,8. Во всех случаях, наблюдалась тенденция к урежению частоты дыхания и стабилизация в пределах нормы на четвертый пятый день наблюдений.

Индекс межсистемных отношений изучаемых висцеральных систем по коэффициенту Хильдебранта для всех групп оставался в пределах нормы (2,8-4,9) в период проведения голодания на фоне резонансной фотоактиваци, отмечалось незначительное увеличение в І месяц ИГЦ с $3,93\pm0,49$ до $4,41\pm0,35$, во ІІІ месяце ИГЦ с $4,41\pm0,23$ до $5,57\pm0,30$ в VI месяце ИГЦ с $4,24\pm0,53$ до $4,57\pm0,22$, в X месяце ИГЦ с $3,80\pm0,6$ до $4,98\pm0,30$, с максимальной величиной в ІІІ месяце ИГЦ, уменьшением значений в пределах нормы в восстановительные дни. Это свидетельствовало о степени согласованности систем дыхания и кровообращения, а также о практически нормальном уровне напряжения вегетативной регуляции функции при дозированном голодании.

Рассчитанный по данным гемодинамики индекс Кердо, отражающий состояние тонуса вегетативной нервной системы, показал, что в дни голодания наблюдается увеличение влияние симпатического влияния голодания и увеличение индекса Кердо, а после дозированного голодания в различные месяцы ИГЦ происходит сдвиг в сторону равновесия его тонуса.

Наибольший сдвиг в сторону преобладания симпатического тонуса больше чем +15 с достоверностью Р≤0,05 в дни ДГ отмечается в первом, третьем, четвертом, пятом, шестом месяцах первой половины ИГЦ, что, возможно связанно с изменением интенсивности обменных процессов, как необходимое условие накопления энергии. Вероятно, акт активации монохроматическим поляризованы красным светом ускоряет метаболические процессы в организме, что отражается на функциональном состоянии организма человека и в восстановительные дни после голодания происходит сдвиг в сторону равновесия от симпатического к парасимпатическому тонусу нервной системы /3/.

Максимальное увеличение симпатического тонуса по индексу Кердо в I месяце ИГЦ приходится с $18,6\pm1,10$ до $21,6\pm1,82$; в III месяце – с $20,6\pm3,32$ до $22,1\pm1,82$; в IV - с $15,9\pm1,84$ до $23,5\pm2,45$; в V месяце с $13,3\pm2,88$ до $19,7\pm3,74$; в VI месяце с $11,5\pm3,24$ до $18,5\pm1,09$. Достоверность различий по критерию Стьюдента между данными предварительных контрольных измерений с данными при дозированном голодании в I , III, IV, V , VI месяцах ИГЦ составляет $P\le0,05$.

Таким образом, биоэнергетическое воздействие на организм человека с использованием спектральных линий в пределах красной части спектра с одной поляризованной структурой, оптический режим которой обеспечивает аппарат «Биорезонанс-2М» перспективно использовать при оздоровления. Особенно процедуры должны быть в месяцы с пониженным биоэнергетическим статусом в связи с годовыми биоритмами.

Дозированное голодание можно рекомендовать в сочетание с резонансной фотоактивацией используя аппарат «Биорезонанс – 2М» для снятия неспецифичесского стресс-синдрома голодания, а также для нормализации и стабилизации функционального состояния организма человека особенно в критические периоды индивидуального годового цикла.

Литература

- 1 Лукьянец В.Г. Бионергетическая реабилитация здоровья новое направление в альтернативной медицине. Алматы, $1997.-120~\mathrm{c.}$
- 2 Барбараш Н.А., Лазик Н.И., Шапошникова В.И. и др. Изменение устойчивости сердечно-сосудистой системы у больных ИБС и здоровых лиц в течение индивидуального года // Российский кардиологический журн. 2000, № 6-c.16-20.
 - 3 Махмудова Г.Х. Лазерная активация в медицине. Алма-Ата: КазГУ, 1992. 249 с.

Summary

Have been obtained the new dates about the specific characteristics of the cardiorespiratoric system before and after the determined fasting on the background of resonance pfotoactivation.

УДК 576.895

Сыздыкова Г.К.

ВЛИЯНИЕ ПОЛА И ГЕНЕРАТИВНОГО СОСТОЯНИЯ ХОЗЯИНА НА РАЗМЕРЫ НЕМАТОД-ОКСИУРАТ

(Павлодарский государственный педагогический институт)

На полевых данных установлено влияние пола, возраста и генеративного состояния мышевидных грызунов на размеры нематод оксиурат. Физиологические особенности половозрастных групп зверьков и генеративное состояние самок рассматриваются как детерминанты потенциальных трофических ресурсов для паразитов (через темпы обмена вещества и энергии).

Морфометрический анализ гельминтов использовался рядом исследователей для изучения межвидовых и внутривидовых отношений /1-6/, однако ни разу не применялся для оценки влияния пола, возраста и генеративного состояния хозяина на паразитов (то есть фактически – взаимодействия паразита с организмом хозяина).

На основании имеющихся к настоящему времени результатов исследований различных групп хозяев можно не без оснований предположить, что влияние пола, возраста и генеративного состояния хозяев на паразитов складывается из многих экологических и физиологических факторов (действующих синергично или антагонистично), а сами половозрастные группы хозяина могут выполнять для популяций паразита разнообразные функции. Во-первых, каждая половозрастная группа у определенных видов животных отличается разными экологическими и поведенческими особенностями, снижающими или увеличивающими вероятность инвазии. Вовторых, животные разного пола, возраста и генеративного состояния отличаются разным уровнем специфической и неспецифической резистентности организма, что существенно влияет на приживаемость и плодовитость гельминтов. В-третьих, животные разных половозрастных групп (и это особенно актуально для теплокровных хозяев) отличаются разными размерами, массой, темпами метаболизма, что предопределяет размеры потенциальных трофических ресурсов для паразита. В-четвертых, гормоны и другие биологически активные вещества организма хозяина могут непосредственно влиять на жизнедеятельность отдельных групп паразитов, как это было убедительно показано на примере цестод. В-пятых, половозрастные группы, как и другие внутрипопуляционные группировки хозяев, могут служить экологическими нишами для конкурирующих видов гельминтов и эксплуатироваться паразитами в зависимости от их свободности или занятости. Таким образом, использование принципа детерминизма при анализе экофизиологических влияний на паразитов в половозрастных группах хозяев превращается, по сути, в анализ многочисленных разнонаправленных векторов различных влияний, сумма которых может иметь в каждой системе паразит-хозяин и разной половозрастной группе свое значение и направление – в зависимости от силы и соотношения этих влияний и факторов.

Влияние пола и генеративного состояния зверьков на размеры нематод-оксиурат изучались нами с целью выявления ряда экофизиологических факторов, воздействующих на гельминтов: темпов метаболизма, потенциальных трофических ресурсов организма хозяина, половых гормонов, резистентности организма. Для этого по итогам четырехлетних отловов грызунов были измерены в общей сложности несколько тысяч экземпляров самок *Syphacia obvelata* от домовой и лесной мышей и обыкновенной полевки из окрестностей города Павлодара от зверьков разных половозрастных и генеративных групп: неполовозрелые (ювенильные и полувзрослые) самки, неполовозрелые самцы, взрослые самцы, а взрослых самок подразделили по генеративному состоянию на три группы — яловые, беременные, кормящие (зверьков, совмещающих лактацию и беременность, в нашем материале не было). Самцы у сифаций короткоживущие и довольно редко попадают в руки исследователя.

У самок нематод измеряли общую длину, максимальную ширину, длину пищевода и хвоста, расстояние от вульвы до переднего конца тела. Пропорции тела оценивали с помощью индексов, выраженных в процентах: максимальная ширина/общая длина тела; длина пищевода/длина тела; длина хвоста/длина тела; расстояние до вульвы/длина тела. У всех величин (абсолютных и относительных) в каждой группе хозяев рассчитывалась средняя арифметическая с ошибкой репрезентативности. Сравнение параметров нематод по половозрастным группам зверьков проводили с помощью критерия Стьюдента t /7/.

Динамика размеров нематод по половозрастным и генеративным группам зверьков 3 видов оказалась следующей (таблицы 1-3). Размеры самок сифаций от обыкновенной полевки у полувзрослых самцов и самок почти одинаковы. У взрослых самцов достоверно уменьшаются все размеры тела червей по сравнению с неполовозрелыми. У взрослых беременных самок полевки длина нематод и длина их пищевода уменьшаются, ширина не снижается по сравнению с полувзрослыми. У кормящих самок значительно уменьшаются все размеры. У сифаций от зрелых самцов снижается относительная длина хвоста, в меньшей мере – пищевода. У беременных и кормящих полевок индексы длина хвоста/длина тела практически одинаковы; они выше, чем у молодняка обоего пола и взрослых самцов. Относительная ширина гельминтов (по отношению к длине тела) наиболее велика у нематод от кормящих самок.

У домовых мышей наиболее крупных размеров нематоды достигают у беременных самок, несколько меньших – у полувзрослых самцов. Значительное снижение всех размеров тела, особенно длины, идет у кормящих самок и зрелых самцов – до почти одинакового уровня. Абсолютное расстояние от вульвы до переднего конца и индекс расстояние до вульвы/длина тела имеют минимальное значение у кормящих самок. Минимальная длина хвоста – у кормящих самок и взрослых самцов, минимальное отношение длины хвоста к длине тела нематод – у половозрелых самцов полевок. Соотношение длины пищевода и тела существенно не меняется; оно минимально у беременных самок и максимально у взрослых самцов. Относительная ширина (по соотношению с длиной тела) довольно стабильна, наименьшая она у беременных, несколько выше – у молодняка, одинакова у зрелых самцов и лактирующих самок.

Таблица 1 - Размеры самок *Syphacia obvelata* от лесных мышей из г. Павлодара и его окрестностей в зависимости от пола и генеративного состояния зверьков

Параметры	Полувзрослые	Половозрелые	Половозрелые	Половозрелые	Половозрелые
	самцы	яловые самки	беременные самки	кормящие самки	самцы
Длина тела	2.611287±0.02198	2.565 ± 0.09915	2.30088 ± 0.02905	2.6913 ± 0.07417	2.698 ± 0.0209
Лимиты	3.6 - 1.0	3.2 - 1.3	3.0 - 0.75	3.2 - 3.2	5.1 - 0.75
Дисперсия	0.16524	0.19661	0.09536	0.12651	0.32399

Максимальная ширина	0.16029 ± 0.00237	0.14175	0.15743 ± 0.00246	0.16761± 0.0037	0.17288 ± 0.001
Лимиты	0.3 - 0.1	0.18 - 0.1	0.23 - 0.1	0.2 - 0.15	0.25 - 0.1
Дисперсия	0.00193	0.02905	0.00246	0.0032	0.00049
Длина	0.2665 ± 0.00151	0.24675±0.00847	0.2565 ± 0.00258	0.2875 ± 0.00928	0.27926 ± 0.00123
пищевода					
Лимиты	0.35 - 0.18	0.35 - 0.18	0.33 - 0.18	0.4 - 0.2	0.4 - 0.15
Дисперсия	0.00074	0.00143	0.00075	0.00189	0.00111
Расстояние от	0.43119 ± 0.00427	0.43026 ± 0.01974	0.45881 ± 0.0074	0.46591 ± 0.01522	0.46719 ± 0.00411
вульвы до					
переднего					
конца					
Лимиты	0.63 - 0.2	0.63 - 0.3	0.63 - 0.3	0.6 - 0.35	0.75 - 0.23
Дисперсия	0.00574	0.0074	0.00576	0.0051	0.01237
Длина хвоста	0.3906 ± 0.00424	0.405 ± 0.01828	0.33916 ± 0.00765	0.40568 ± 0.01693	0.37766 ± 0.00343
Лимиты	0.65 - 0.15	0.65 - 0.2	0.68 - 0.1	0.65 - 0.3	1.25 - 0.15
Дисперсия	0.00614	0.00668	0.00661	0.00631	0.00861
Расстояние до	16.58698 ± 0.18283	17.04211± 0.61631	19.70952 ± 0.30554	14.94706 ± 0.47894	17.49384 ± 0.12212
вульвы/длина					
тела					
Лимиты	29.2 - 10.0	23.1 - 13.6	27.8 – 13.6	18.4 – 11.3	40.0 - 9.7
Дисперсия	10.52999	7.21702	9.80202	3.89952	10.90091
Длина	14.65117 ± 0.20652	15.9 ± 0.52395	14.81327 ± 0.32417	16.65238	14.29469 ± 0.13095
хвоста/длина					
тела					
Лимиты	27.3 - 7.4	21.7 – 12.5	30.7 - 5.6	22.5 – 10.5	50.0 - 6.1
Дисперсия	14.544352	5.49053	11.87491	8.74262	12.5863
Длина	10.29228 ± 0.08968	9.785 ±0.35786	11.29204 ± 0.14357	11.23 ± 0.45463	10.7342 ± 0.09186
пищевода/длина					
тела					
Лимиты	18.3 - 7.1	15.4 – 7.9	17.2 - 7.7	15.3 – 8.3	21.1 - 4
Дисперсия	2.60598	2.56134	2.32913	4.13379	6.19347
Ширина/длина	6.25117 ± 0.07902	5.68 ± 0.26878	6.92035 ± 0.10379	7.26667 ± 0.49422	$6,71857 \pm 0.06646$
тела					
Лимиты	15.0 - 3.4	9.6 – 4.2	10.2 - 5.0	12.0 – 4.5	23.3-3.9
Дисперсия	2.13556	1.44484	1.21735	5.12933	3.28131

Таблица 2 - Размеры самок *Syphacia obvelata* от домовых мышей из г. Павлодара и его окрестностей в зависимости от пола и генеративного состояния зверьков

Параметры	Полувзрослые самцы	Половозрелые	Половозрелые	Половозрелые
1	2	беременные самки	кормящие самки	самцы
1	2	3	4	5
Длина тела	3.54647 ± 0.05111	3.75217 ± 0.07819	3.07696 ± 0.0431	3.07874 ± 0.14097
Лимиты	5.4 - 2.2	5.7 - 2.8	4.9 - 2.0	5.5 - 2.0
Дисперсия	0.44416	0.28122	0.54418	3.31884
Максимальная ширина	0.21782 ± 0.00219	0.22391 ± 0.00433	0.20276 ± 0.00179	0.22143 ± 0.00038
Лимиты	0.3 - 0.15	0.31 – 0.15	0.34 – 0.12	0.37 – 0.13
Дисперсия	0.00082	0.00086	0.00094	0.00243
Длина пищевода	0.32929 ± 0.000379	0.32391 ± 0.00786	0.297 ± 0.00228	0.31581 ± 0.00804
Лимиты	0.45 - 0.25	0.5 - 0.23	0.4 - 0.2	0.43 - 0.2
Дисперсия	0.000243	0.00284	0.00152	0.01081
Расстояние от вульвы до	0.55725 ± 0.00928	0.61685 ± 0.01954	0.42425 ± 0.00475	0.52991 ± 0.01112
переднего конца				
Лимиты	0.85 - 0.3	0.85 - 0.4	0.8 - 0.18	0.85 - 0.25
Дисперсия	0.01455	0.01756	0.00653	0.02054
Длина хвоста	0.54426 ± 0.01102	0.575 ± 0.01628	0.49349 ± 0.01506	0.49609 ± 0.00887
Лимиты	0.85 - 0.2	0.9 - 0.4	0.9 - 0.2	0.9 - 0.2
Дисперсия	0.02063	0.01219	0.06528	0 01299
Расстояние до	15.79882 ± 0.17973	16.47609 ± 0.43493	13.95138 ± 0.15046	17.49384 ± 0.12212
вульвы/длина тела				
Лимиты	22.6 – 9.7	23.0 – 11.0	25.8 – 6.8	40.0 – 9.7

Дисперсия	5.45893	8.70142	6.56472	10.90091
Длина хвоста/длина тела	15.39412 ± 0.22107	15.33043 ± 0.29863	15.92153 ± 0.32129	14.29469 ± 0.13095
Лимиты	26.0 - 6.7	19.1 – 11.5	32.0 - 7.4	50.0 – 6.1
Дисперсия	8.30849	4.10239	29.72974	12.5863
Длина пищевода/длина	9.55858 ± 0.12674	8.51522 ± 0.22939	9.75879 ± 0.16251	10.7342 ± 0.09186
тела				
Лимиты	14.5 - 5.6	10.8 - 5.1	16.3 - 6.7	21.1 – 4.0
Дисперсия	2.71458	2.42043	7.71132	6.19347
Ширина/длина тела	6.34588 ± 0.10371	6.02609 ± 0.11461	6.72918 ± 0.06373	6.71857 ± 0.06646
Лимиты	10.0 - 3.4	7.5 - 4.1	12.1 - 3.8	23.3 – 3.9
Дисперсия	1.82853	0.60419	1.19004	3.28131

Таблица 3 - Размеры самок *Syphacia obvelata* от полевки обыкновенной из г. Павлодара и его окрестностей в зависимости от пола и генеративного состояния зверьков

Параметры	Полувзрослые самки	Полувзрослые самцы	Половозрелые беременные самки	Половозрелые кормящие самки	Половозрелые самцы
Длина тела	3.60526 ± 0.16901	3.64684 ± 0.05517	3.31333 ± 0.12493	2.69048 ± 0.13748	3.34561 ± 0.06869
Лимиты	4.8 – 1.9	5.0 - 2.5	4.4 - 2.5	4.0 – 1.8	4.4 – 1.5
Дисперсия	0.54275	0.24047	0.2341	0.3969	0.26895
Максимальная ширина	0.19868 ± 0.0126	0.22437 ± 0.00537	0.20667± 0.000374	0.1881 ± 0.01014	0.2193 ± 0.00447
Лимиты	0.28 - 0.13	0.48 - 0.15	0.23 - 0.18	0.28 - 0.1	0.3 - 0.15
Дисперсия	0.000301	0.000228	0.00021	0.00026	0.00114
Длина пищевода	0.33421 ± 0.01031	0.33987 ± 0.00522	0.30667 ± 0.00571	0.2975 ± 0.00922	0.29864± 0.00548
Лимиты	0.43 - 0.28	0.6 - 0.25	0.35 - 0.28	0.38 - 0.23	0.38 - 0.2
Дисперсия	0.00202	0.000215	0.00049	0.00017	0.00165
Расстояние от вульвы до переднего конца	0.48684 ± 0.02685	0.52911 ± 0.01894	0.515 ± 0.028	0.413236±0.02779	0.45094± 0.01001
Лимиты	0.68 - 0.25	0.9 - 0.4	0.65 - 0.38	0.7 - 0.3	0.6 - 0.28
Дисперсия	0.0137	0.02835	0.01176	0.01313	0.00531
Длина хвоста	0.54605 ± 0.03421	0.50918 ± 0.00995	0.525 ± 0.03246	0.44286 ± 0.02244	0.45231 ± 0.01988
Лимиты	0.9 - 0.35	0.7 - 0.35	0.65 - 0.38	0.6 - 0.2	0.65 - 0.25
Дисперсия	0.02224	0.00782	0.0158	0.01057	0.02135
Расстояние до вульвы/длина тела	13.50947 ± 0.4155	15.08861 ± 0.22129	15.52 ± 0.6068	14.94706±0.47894	13.72075± 0.32715
Лимиты	17.3 – 10.2	22.0 – 11.4	18.8 - 11.8	18.4 – 11.3	20.5 - 8.6
Дисперсия	3.28015	3.86871	5.52314	3.89952	5.67245
Длина хвоста/длина тела	15.27368 ± 0.67637	14.01899 ± 0.28467	16.24667± 0.82438	16.65238± 0.64522	13.61481±0.34018
Лимиты	21.4 – 11.4	19.2 – 8.3	24.0 – 12.5	22.5 – 10.5	18.8 – 8.6
Дисперсия	8.69205	6.40207	10.1941	8.74262	6.24883
Длина пищевода/ длина тела	9.51579 ± 0.36645	9.4038 ± 0.14744	9.43333 ± 0.36091	11.23 ± 0.45463	9.13091 ± 0.21629
Лимиты	14.5 – 7.8	14.6 – 6.6	12.0 - 6.3	15.3 - 8.3	15.0 - 5.7
Дисперсия	2.5514	1.71729	1.95381	4.13379	2.57292
Ширина/длина тела	5.67895 ± 0.40346	6.19747 ± 0.13956	6.35333 ± 0.24551	7.26667 ± 0.49422	6.69474 ± 0.17822
Лимиты	9.8 - 3.0	12.0 – 4.3	8.0 - 4.5	12.0 – 4.5	11.7 – 4.7
Дисперсия	3 09287	1.53871	0.9041	5.12933	1.81051
77					

У лесных мышей длина сифаций от молодняка самцов, яловых и кормящих самок, взрослых самцов одинакова, хотя у гельминтов от яловых самок минимальна ширина и длина пищевода и максимальна длина хвоста. У нематод от беременных самок наступает резкое уменьшение длины тела и хвоста, некоторое снижение — длины пищевода. Индекс расстояние до вульвы/длина тела максимален у нематод от беременных самок лесной мыши, минимален — от кормящих. Относительная длина хвоста наибольшая у кормящих и яловых самок. Относительная длина пищевода довольно стабильна, несколько снижаясь у яловых самок мышей. Достаточно стабильно и отношение ширины к длине, минимальное у яловых, максимальное — у кормящих самок.

Таким образом, уменьшение размеров нематод у беременных самок имеет место у полевок и лесных мышей, увеличение – у домовой мыши. У нематод от взрослых самцов размеры уменьшаются по сравнению с молодняком