Количество адраспана резко снизилось при очень плохом жизненном состоянии. Показатель сбоя эбелек – в заметных количествах может появляться и на более ранних стадиях, кроме того, он замещает доминанты совместно с многолетними сорняками, чаще с адраспаном и кузинией.

По результатам почвенно-геоботанических исследований и анализа почвенно-геоботанических материалов прежних лет составлены схемы дигрессий-демутаций.

Установленные ряды деградации выглядят следующим образом: ковыльно-полынное с эфемерами \rightarrow полынно-эфемеровое \rightarrow полынно-эфемеровое с ковылем \rightarrow полынно-эфемеровое \rightarrow эфемерово-полынное с эбелеком \rightarrow эфемеровое с полынью и эбелеком \rightarrow эфемерово-эбелековое \rightarrow эбелековое. \rightarrow скотосбой.

Ухудшению состояния и выпадению сорнотравья (адраспана, итсигека, брунца, гультемии и др.) из состава травостоя способствовало, по-видимому, конкурентное замещение сорнотравья коренными растениями и эфемероидами (полынь белоземельная, ковыль Лессинга осока толстостолбиковая и мятлик луковичный) вследствие сокращения выпасной нагрузки на пастбищные экосистемы.

Литература

- 1 Усен К. Оценка устойчивости пастбищных экосистем Эмбенского плато к выпасу. Автореферат диссертации на соискание ученой степени канд. биол. наук: Алматы, КазНАУ 28. 11. 2005.
- 2 Мирзадинов Р.А. и др. Восстановление пастбищной растительности и оценка опустынивания в Казахстане // Географические проблемы устойчивого развития: теория и практика. Алматы, 2008. - С. 473-482.
- 3 Мирзадинов Р.А. и др. Восстановление деградированной растительности и механизм выпадения сорных растений // Мир растений и его охрана. Материалы МНТК посвященной 70-летию Института ботаники. Алматы, 12-14 сентября, 2007. С. 151-155.
- 4 Курочкина Л.Я. Задачи эколого-физиологических исследований растительных сообществ. //Эколого-физиологические исследования пустынных фитоценозов (Материалы совещания). Алма-Ата: Наука, 1987. С 24-27.
- 5 Темирбеков С.С., Рачковская Е.И. Оценка антропогенной трансформации предгорных пастбищ на основе космических снимков. //Итоги и перспективы развития ботанической науки в Казахстане (Материалы международной научной конференции, посвященой 70-летию Института ботаники и фитоинтродукции) Алматы, 2002. С. 259-261.

Тұжырым

Кезінде малды шектен тыс жаюға байланысты деградацияланған жайылым экожүйелерін зерттеу нәтижелері келтірілген. Бұрын жүргізілген зерттеулерді талдау арқылы өсімдік қауымдастықтарының қалпына келу сукцессияларының қалай жүретіні анықталған.

Summary

Results of researches, conducted after pasture degradation of pasture ecosystems are exposed. Based on anglyses of former researches recovery successions of vegetation associations are discussed.

300ЛОГИЯ

УДК 597. (14+15)

Балабиева Г.К.

МОРФОБИОЛОГИЧЕСКОЕ ОПИСАНИЕ СЕРОГО ГОЛЬЦА *TRIPLOPHYSA DORSALIS* ИЗ РЕКИ БЕСАГАШ

(Институт зоологии)

Исследованы биологические показатели и морфологическая изменчивость серого гольца Triplophysa dorsalis из реки Бесагаш. По большинство изучавшихся пластических признаков выявлена значительная изменчивость, счетные признаки более стабильные. Упитанность серого гольца высокая, что свидетельствует о достаточной обеспеченности пищей. Несмотря на достаточную обеспеченность пищей и отсутствие хищников, у серого гольца из р. Бесагаш короткая продолжительность жизни и низкая плодовитость.

Изучение изменчивости популяций, обитающих в горных условиях, представляет большой теоретический и практический интерес 11.

Изменения фенетического разнообразия рыб может быть вызвано прямым и опосредованным влиянием человеческой деятельности. Фенетические изменения популяции, вызванные изменением условий обитания, отмечались многократно, в частности при изменении гидрологического режима водоемов и при переселении группы особей в водоем, где ранее представители данного вида не обитали. Однако перенос малой группы особей популяции за пределы распространения данной популяции автоматически означает исключение их и их потомков из состава популяционной системы /2/.

Серый голец *Triplophysa dorsalis* широко расселившийся вид от восточных участков Нагорной Азии до бассейна Амударьи /3/. Для водоемов Балхашского бассейна является аборигеном. Несмотря на широкое распространение в прошлом в водоемах Балхашского бассейна, имеются лишь самые общие сведения о морфологии и биологии этого вида /3,4,5,6/: Серый голец - некрупная рыба (максимальная длина до 170 мм, но обычно встречаются рыбы длиной до 90 мм.); тело невысокое, удлиненное, несколько уплощенное снизу, голое. Глаза небольшие овальные, миндалевидные, реже круглые, обращены в стороны или в стороны - вверх. Отверстия ноздрей парные, сближены (расстояние между отверстиями меньше их диаметра). Рот нижний. Вокруг рта имеется три пары усиков. Хвостовой плавник равнолопастной, но выемка небольшая, или усеченный. Основной тон окраски серый — более или менее темный в зависимости от конкретного водоема. Спина более темная, брюхо светлое. На боках тела, спинном и хвостовом плавниках могут быть черные пятнышки различные по форме. На спине и боках хвостового стебля пятна могут сливаться в темную полосу.

Обитает у дна водоемов, может населять как горные участки рек с заметным течением, так и равнинные участки со слабым течением, но стоячей воды избегает. Питается в основном водными личинками насекомых, но также может потреблять и планктонных ракообразных. В небольшом количестве встречается в предгорной зоне в реках Алакольской системы озер (Тентек) и притоках р. Или (р. Чилик, Большая Алматинка, Бесагаш, и др.). В результате вселения чужеродных видов рыб и преобразования биотопов обитания путем изменения гидрологического режима рек естественный ареал постоянно сокращается. Состояние и численность на территории Алматинской области нуждаются в постоянном мониторинге /7/.

Целью настоящего исследования являлось изучение биологических показателей и морфологической изменчивости серого гольца из реки Бесагаш.

Материалы и методики

Отлов рыб проводили мелкоячейным бреднем и сачком в 2006-2008 г.г. Для исследования были взяты 53 экземпляров из р. Бесагаш. Морфобиологическую обработку проводили по методике /8,9/, статистическую обработку - по руководству Γ .Ф.Лакина /10/ с использованием программы "Statistica 6.0". Для сравнения выборок использовали критерии $T_{\rm st}$ /10/, CD /11/, $d^2_{1,2}$ /12/.

Результаты и их обсуждение

Р. Бесагаш была исследована в предгорной зоне. На этом участке скорость течения снижается по сравнению с истоками, однако остается достаточно быстрым. Дно в основном русле каменисто-галечниковое. Местами образуются заводи и рукава со слабым течением, где имеются значительные скопления ила. Серый голец *Triplophysa dorsalis* в реке встречается совместно с пятнистым губачом (*Triplophysa strauchii*), одноцветным губачом (*Triplophysa labiatus*), голым османом (*Diptychus dybowskii*). Хищные и чужеродные виды отсутствуют. Таким образом, р. Бесагаш для серого гольца является типичным местом обитания.

Данные биологического анализа представлены в таблице 1. Численность сильно изменяется как по годам, так и на различных участках реки. По сравнению с литературными данными /3/, во всех наших выборках из р. Бесагаш упитанность по Фультону высокая, что свидетельствует о достаточной обеспеченности пищей. Однако в

среднем размеры рыб мельче, чем в описанных ранее выборках /3,4,5,6/. Наиболее крупная рыба из исследованных нами имела длину тела 82 мм.

Признаки	р. Бесагаш 2006 г., 32 экз		р. Бесагаш 2007 г., 10 экз.		р. Бесагаш 2008 г., 11 экз.	
	min - max	M±m	min - max	M±m	min - max	M±m
L, mm	49-82	69,09±6,08	60,5-81	68,52±5,86	51-78,5	65±8,83
l, mm	40-68	57,90±5,16	52-68	57,94±4,64	42,8-68,8	55,17±8,32
Q, g	1,36-5,53	$3,66\pm0,85$	2,4-5,4	3,54±0,86	1,4-5	3,22±1,21
Fulton	1,61-2,18	1,83±0,13	1,6-2	1,77±0,11	1,5-2,6	1,85±0,26

^{*}Примечание: L - полная длина тела ; l - длина тела без хвостового плавника; Q - масса тела; Fulton - упитанность по Фультону .

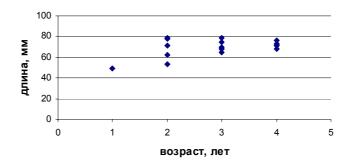


Рисунок 1 – Скорость линейного роста серого гольца (эмпирические данные) из р. Бесагаш 2006 г.

Данные по скорости роста серого гольца в р. Бесагаш представлены на рисунке 1. В возрасте 1 года рыбы достигают в среднем (длина без хвостового плавника) 40мм, в 2 года 43-66, в 3 года 55-66, 4 года 57-63мм. В 2007 г. в возрасте 2 года длина рыб достигала 52-56 мм, в 3 года - 61-68 мм; в 2008 г. длина тела изменялась от 43,8 до 45,5 и достигала 68,8 мм соответственно у двух - и трехлетних рыб. После достижения длины тела около 70 мм скорость роста заметно снижается. Сравнение с литературными данными /3/ выявило, что серый голец растет быстрее, чем указывалось ранее. Несмотря на достаточную обеспеченность пищей и отсутствие хищников, у серого гольца из р. Бесагаш короткая продолжительность жизни.

Соотношение самок и самцов в 2006 г. соответствует 2:1, в 2007,2008 г.г. 1:1. В р. Бесагаш 2006 г. у самок длиной тела 49-82 мм плодовитость колеблется от 1439-5494 икринок (абсолютная плодовитость от 0,03-0,01), в 2007 г. длиной тела 60,5-81 плодовитость колеблется от 1395-3008 икринок (абсолютная плодовитость от 0,04-0,02), в 2008 г. длиной тела 51-78,5 плодовитость колеблется от 383-1580 икринок (абсолютная плодовитость от 0,13-0,04). По нашем данным в этой реке 2007-2008 г.г. плодовитость меньше, чем известно по литературным данным /3/. Половозрелость наступает в возрасте 2 года. Нерест серого гольца в р. Бесагаш начинается с ранней весны и продолжается до поздней осени.

Рисунок 2 – Серый голец из р. Бесагаш

По внешнему виду гольцы из р. Бесагаш соответствуют общему описанию из водоемов Балхашского бассейна (рисунок 2).

Морфометрические показатели представлены в таблице 2, их сравнение - в таблице 3.

Таблица 2 - Морфологические показатели серого гольца из р. Бесагаш

Водоемы	р. Бесагаш 2006 г. n=32		р. Бесагаш 2007 г. n=10		р. Бесагаш 2008 г. n=11		
признаки	min-max	M±m	min-max	M±m	min-max	M±m	
l,mm	40-68	57,91±5,17	52-68	57,94±4,65	42,8-68,8	55,17±8,32	
B % or 1:							
aD	52,2-61	56,29±1,66	53,8-57,4	55,84±0,87	53,9-60,7	55,55±1,06	
pD	33,3-41,7	37,89±1,52	34,4-38,5	36,14±1,22	31,2-40,4	35,55±1,67	
aA	67,6-75,4	70,87±1,38	62,9-72,3	69,70±2,13	69,2-78,9	72,07±1,48	
aV	51,7-57,9	55,35±1,29	52,7-56,9	54,91±1,21	54,2-61,4	56,34±1,41	
aP	21,7-26,8	24,22±0,93	22,7-26,4	23,93±0,79	22,4-28,9	25,04±1,26	
PV	30,8-38,6	34,44±1,60	30,4-34,9	32,95±1,35	31,4-35,05	32,76±0,76	
VA	12,9-18,2	15,91±1,13	14,3-16,2	15,23±0,51	13,9-18,2	15,57±0,96	
lca	18,5-24,6	22,07±1,35	17,2-20,6	18,69±1	14,5-20,3	17,76±1,79	
lc	23,8-29,3	26,26±0,99	18,5-26,4	24,28±1,27	21,8-27,1	24,13±1,08	
ao	10-13,3	11,83±0,65	9,2-10,8	10,0±0,40	8,3-10,9	9,25±0,85	
0	3,3-6,2	4,83±0,60	3,4-4	3,70±0,16	2,6-4,4	3,45±0,48	
ор	9-14,6	12,32±0,87	9,8-11,4	10,76±0,32	9,7-11,2	10,33±0,41	
lmx	1,5-3,7	2,53±0,47	0,8-1,7	1,28±0,25	0,7-1,5	1,12±0,26	
lmd	1,6-4,9	3,21±0,48	1,5-2,4	1,96±0,26	1,1-2,3	1,66±0,33	
hc	10,5-17	13,40±0,95	12,5-14,5	13,56±0,51	13,1-15,6	13,92±0,74	
io	7,6-12,2	9,85±0,48	8,2-9,4	8,74±0,36	7,5-12,7	9,04±0,96	
Н	17,5-23,3	20,37±1,16	16,8-20,4	18,28±0,96	16,1-22,4	18,31±1,49	
h	11,1-14,6	12,58±0,67	10,7-12,8	11,39±0,47	10,5-14,5	11,79±0,84	
HTT	15,8-25,8	18,72±1,63	15,3-18,9	17,28±0,76	15,3-19,6	17,20±0,97	
hTT	8,3-12,5	10,72±0,76	8,9-11,3	9,92±0,39	9,3-11,7	10,13±0,50	
1D	8,5-13,1	10,80±0,79	9,2-11,5	10,28±0,71	9,8-11,7	10,71±0,41	
hD	16,4-20	18,32±0,81	16-18,7	17,53±0,67	15,9-20,8	17,71±0,87	
1A	6,1-9,6	7,80±0,64	6,1-8,6	7,32±0,84	6,2-8	7,29±0,43	
hA	13,4-21,3	17,07±0,98	13,8-16,1	15,3±0,55	12,9-16,4	15,11±0,72	
1P	15,9-23,3	18,96±1,45	14,5-19,8	17,32±1,61	14,5-18,7	15,91±1,06	
1V	11,1-15	13,55±0,70	11,4-13,2	12,11±0,53	9,6-14	11,65±0,80	
lCs	21,1-31,6	26,67±2,22	20,5-24,6	22,47±1,37	19,3-28,5	22,64±2,21	
lCm	16,4-22,2	19,88±0,97	17,9-20	18,86±0,81	15,9-21,3	18,55±1,42	
lCi	20,9-31,6	25,74±2,28	19,6-24,5	22,15±1,07	19,3-25,7	22,61±1,50	
Счетные приз	знаки:						
D жест.	1-1	1±0	1-1	1±0	1-2	1,27±0,40	
D ветв.	6-8	6,91±0,45	7-7	7±0	6-8	7±0,36	
А жест.	1-1	1±0	1-1	1±0	1-2	1,09±0,17	
А ветв.	5-6	5,19±0,30	5-5	5±0	5-6	5,27±0,40	
V жест.	1-1	1±0	1-1	1±0	1-1	1±0	
V ветв.	5-7	5,91±0,34	6-6	6±0	5-7	6,36±0,58	
Р лев.	9-14	11,5±0,9	10-13	11,3±0,62	10-13	11,4±0,64	
Vert	30-35	32,8±1,22	31-33	32,3±0,56	31-33	32±0,67	
*Пъти сотгот	ша: 1 - данна жад		D				

*Примечание: 1 - длина тела без хвостового плавника; аD - антедорсальное расстояние; рD - постдорсальное расстояние; аA, aV, aP – расстояние до основания анального, брюшных и грудных плавников соответственно; P-V - расстояние между основаниями грудного и брюшного плавников; V-A - размер промежутка между брюшными и анальным плавником; lca - длина хвостового стебля; lc - длина головы; ао - длина рыла; о – диаметр глаза; ор – заглазничный отдел головы; lmx – высота верхней челюсти; lmd – высота нижней челюсти; hc -высота головы у затылка; io - ширина лба; H - наибольшая высота тела ;h - наименьшая высота тела; HTT - наибольшая ширина тела; hTT - наименьшая ширина тела; lD , lA – длина основания спинного и анального плавника; hD, hA – высота спинного и анального плавника; lP, lV – длина грудных и брюшных плавников; lCs – длина верхней лопасти хвостового плавника; lCm – длина средней лопасти хвостового плавника; lCi – длина нижней лопасти хвостового плавника; Dнев., V нев., V ветв., A нев., Авет.- число неветвистых и ветвистых лучей в спинном, брюшных и анальном плавниках соответственно; P лев. – число лучей в левом грудном плавнике; Vert - число позвонков.

По счетным признакам выявлены следующие особенности: в спинном, в анальном плавнике неветвистых лучей и в грудных плавниках ветвистых лучей меньше, в спинном и в анальном ветвистых лучей больше известных /3/.

Таблица 3 - Морфологические сравнение серого гольца из р. Бесагаш 2006 г. n=32

Водоемы	р. Бесагаш 2007 г. n=10			р. Бесагаш 2008 г. n=11				
признаки	T_{st}	CD	$d^{2}_{1,2}$	T_{st}	CD	$d^{2}_{1,2}$		
l,mm	0	0	0,52	0,23	0,02	1480,85		
B % or 1:								
aD	0,20	0,08	1413,35	0,27	0,10	1826,47		
pD	0,72	0,30	6343,68	0,77	0,25	6558,69		
aA	0,34	0,10	5736,09	0,40	0,13	7516,92		
aV	0,20	0,09	1012,58	0,39	0,15	3880,19		
aP	0,18	0,11	147,94	0,38	0,18	833,90		
PV	0,58	0,22	3170,66	0,75	0,33	7386,54		
VA	0,45	0,30	634,29	0,18	0,10	67,62		
lca	1,68	0,84	10652,31	1,62	0,61	8841,90		
lc	0,79	0,32	4329,77	1,13	0,60	6586,59		
ao	1,83	1,86	3985,01	2,03	1,59	3712,08		
0	1,45	1,86	1321,13	1,44	1,50	301,81		
ор	1,27	1,03	3563,90	1,60	1,29	5012,39		
lmx	1,83	2,67	154,06	2,05	2,99	174,27		
lmd	1,77	2,51	275,95	2,08	2,78	256,81		
hc	0,11	0,08	29,09	0,33	0,21	184,75		
io	0,95	0,82	1328,07	0,45	0,26	158,59		
Н	1,11	0,59	3857,52	0,84	0,35	2314,62		
h	1,13	1,07	1577,11	0,56	0,40	409,23		
HTT	0,61	0,25	1526,66	0,62	0,25	1306,14		
hTT	0,72	0,64	528,48	0,51	0,43	245,82		
lD	0,40	0,30	143,50	0,08	0,07	8,86		
hD	0,61	0,46	962,75	0,38	0,24	397,92		
lA	0,39	0,32	72,62	0,53	0,56	149,35		
hA	1,15	0,74	4294,10	1,15	0,67	3072,37		
1P	0,63	0,24	1051,01	1,37	0,62	5039,49		
lV	1,30	1,17	2536,43	1,32	0,92	2304,98		
lCs	1,36	0,44	11861,66	1,03	0,26	5133,40		
lCm	0,66	0,42	1447,01	0,62	0,29	1259,77		
lCi	1,17	0,38	9784,67	0,92	0,27	4382,10		
Счетные при	Счетные признаки:							
D жест.	0	0	0	0,58	1,25	0		
D ветв.	0,15	0,23	0	0,10	0,12	4,20		
А жест.	0	0	0	0,30	1	0		
А ветв.	0,47	1,19	0	0,14	0,23	4,40		
Лучей в V	0,18	0,33	0	0,53	0,62	90,75		
Р лев.	0,17	0,12	31,12	0,12	0,09	17,46		
Vert	0,30	0,19	1297,62	0,43	0,25	2010,49		

В результате сравнения выборок разных лет выявлена большая изменчивость (по критерию CD) длины рыла, диаметра глаза и заглазничного отдела головы, высота верхней челюсти и высота нижней челюсти постоянно изменяются. Это может быть связано с уменьшением относительной длины головы в период с 2006 по 2008 г.г. Большую вклад в общую изменчивость (по критерию дивергенция) проявляют следующие признаки: антедорсальное расстояние, постдорсальное расстояние, расстояние до основания анального, брюшных плавников соответственно, расстояние между основаниями грудного и брюшного плавников, длина хвостового стебля, длина головы, длина рыла, диаметр глаза, заглазничный отдел головы, ширина лба, наибольшая высота тела, наименьшая высота тела, наибольшая ширина тела, высота анального плавника, длина грудных и брюшных плавников, длина верхней лопасти хвостового плавника, длина средней лопасти хвостового плавника, длина нижней лопасти хвостового плавника, число позвонков. Возможно, это большая изменчивость пластических признаков обусловлена нестабильностью среды обитания: летом р. Бесагаш значительно мелеет, в 2008 г.на исследуемом участке высыхала полностью, и рыбы, населяющие эту реку, сохраняются лишь в ямах. Весной и осенью, когда уровень воды в реке повышается, рыбы вновь расселяются по всей реке.

Выводы

- 1. р. Бесагаш является типичным местом обитания серого гольца.
- 2. Упитанность серого гольца высокая, что свидетельствует о достаточной обеспеченности кормом.
- 3. Несмотря на достаточную обеспеченность пищей и отсутствие хищников, у серого гольца из р. Бесагаш короткая продолжительность жизни и низкая плодовитость.