

P.V. Vesselova , G.M. Kudabayeva ,
 D.Sh. Abdildanov , S. Ussen

Institute of botany and phytointroduction, Almaty, Kazakhstan\

*e-mail: abdildanov00@mail.ru

INFLUENCE OF DISTURBANCE FACTORS ON THE COMPOSITION AND STRUCTURE OF VEGETATION IN THE DESERT PART OF THE SYRDARYA RIVER VALLEY (KYZYLORDA REGION)

The article examines in detail the impact of various natural and anthropogenic disturbance factors on the composition, structure, and spatial organisation of vegetation in the desert part of the Syrdarya River valley within the Kyzylorda region. Field studies carried out during 2015–2023 indicate widespread and progressive degradation of vegetation cover, resulting primarily from intensive year-round grazing, unsustainable rice cultivation practices, expansion of irrigated agriculture, and the growing influence of transport and industrial infrastructure. These pressures lead to the simplification of plant communities, reduction of phytocoenotic stability, and fragmentation of habitats. The most heavily transformed areas are marked by a sharp decline in species richness and the displacement of fodder and ecologically significant taxa by weedy, ruderal, and often toxic species such as *Peganum harmala* L., *Zygophyllum fabago* L., and *Pseudosophora alopecuroides* (L.) Sweet, which form persistent secondary communities. The study also highlights the role of soil salinisation, periodic droughts, and microrelief changes in accelerating vegetation degradation under arid-climatic conditions. The conclusions underline the importance of integrating disturbance assessment into regional land-use planning and developing evidence-based programmes for the rehabilitation, conservation, and sustainable management of degraded desert ecosystems.

Keywords: anthropogenic impact; degradation; Kyzylorda region; Syrdarya river valley; vegetation.

П.В. Веселова, Г.М. Кудабаева, Д.Ш. Абдилданов*, С. Усен

Ботаника және фитоинтродукция институты, Алматы, Қазақстан

*e-mail: abdildanov00@mail.ru

Сырдария өзені аңғарының шөлейт бөлігіндегі (Қызылорда облысы) өсімдіктердің құрамы мен құрылымына бұзылу факторларының әсері

Мақала Қызылорда облысы аумағындағы Сырдария өзенінің шөлейт бөлігіндегі өсімдік жамылғысының құрамына, құрылымына және кеңістіктік үйімдасуына әртүрлі табиги және антропогендік бұлдыру факторларының әсерін жан-жақты қарастырады. 2015–2023 жылдары жүргізілген даалық зерттеулер өсімдік жамылғысының кең тараған және үдемелі деградациясын анықтады. Оның негізгі себептері – жыл бойы қарқынды мал жаю, қүріш өсірудің тиімсіз әдістері, суармалы егіншіліктің кеңеюі, сондай-ақ көлік және өнеркәсіп инфрақұрылымының қүшейіп келе жатқан ықпалы. Бұл қысымдар өсімдік қауымдастырының қарапайымдануына, фитоценоздардың тұрақтылығының төмендеуіне және мекендеу ортасының фрагментациясына әкеледі. Ең көп өзгеріске ұшыраған учаскелерде түрлік алуандықтың күрт азаюы және *Peganum harmala* L., *Zygophyllum fabago* L., *Pseudosophora alopecuroides* (L.) Sweet сынды арамшөптік әрі жиі үйітты өсімдіктердің басым болуы нәтижесінде құнды мал азықтық және экологиялық маңызды түрлер ығыстырылған. Зерттеу сондай-ақ, топырақтың тұздануы, мерзімді қуаныштықтар және микрорельефтің өзгеруі сияқты факторлардың құрғақ климат жағдайында деградацияны жеделдететінін атап өтеді. Қорытындылар бұлғын деңгейін өнірлік жерді пайдалану жоспарлауына енгізудің, сондай-ақ шөлейттенген экожүйелерді қалпына келтіру, сақтау және тұрақты басқаруға бағытталған ғылыми негізделген бағдарламалар әзірлеудің маңыздылығын көрсетеді.

Түйін сөздер: антропогендік әсер ету, тозу; Сырдария алқабы; өсімдік жамылғысы; Қызылорда облысы.

П.В. Веселова, Г.М. Кудабаева, Д.Ш. Абдилданов*, С. Усен

Институт ботаники и фитоинтродукции, Алматы, Казахстан

*e-mail: abdildanov00@mail.ru

Влияние факторов нарушенности на состав и структуру растительности в пустынной части долины реки Сырдарьи (Кызылординской области)

Статья подробно рассматривает влияние различных природных и антропогенных факторов нарушенности на состав, структуру и пространственную организацию растительности в пустынной части долины реки Сырдарья в пределах Кызылординской области. Полевые исследования, проведённые в 2015–2023 гг., свидетельствуют о широком распространении и прогрессирующем характере деградации растительного покрова, обусловленной прежде всего интенсивным круглогодичным выпасом скота, неустойчивыми методами возделывания риса, расширением площадей орошаемого земледелия, а также возрастающим влиянием транспортной и промышленной инфраструктуры. Эти факторы приводят к упрощению растительных сообществ, снижению фитоценотической устойчивости и фрагментации местообитаний. Наиболее трансформированные участки характеризуются резким сокращением видового богатства и вытеснением кормовых и экологически значимых таксонов сорными,rudеральными и нередко токсичными видами, такими как *Peganum harmala* L., *Zygophyllum fabago* L. и *Pseudosophora alopecuroides* (L.) Sweet, формирующими устойчивые вторичные сообщества. В исследовании также подчёркивается роль засоления почв, периодических засух и изменений микрорельефа, ускоряющих деградацию растительности в аридных климатических условиях. В выводах акцентируется необходимость учёта степени нарушенности при планировании регионального землепользования и разработке научно обоснованных программ по восстановлению, охране и устойчивому управлению деградированными пустынными экосистемами.

Ключевые слова: антропогенное воздействие, деградация, долина Сырдарьи, растительность, Кызылординская область.

Introduction

The desert part of the Syrdarya river valley, covering a vast territory located within the West-North Turan subprovince of the North Turan subprovince of the North Turan province of the Iran-Turan subregion of the Sahara-Gobi desert area in accordance with the modern botanical and geographical zoning [1]. The considerable length of the river causes its crossing of different types of desert landscapes, including the entire subzone of medium (perennial saltwort) deserts, stretching from south-east to north-west. At the same time, in the delta area, near the Small Aral, the vegetation cover is influenced by the northern desert subzone, where wormwood-type plant communities dominate.

In accordance with the modern scheme of soil zoning of Kazakhstan, the study area belongs to the subzone of typical deserts, characterised by grey-brown, light-brown and associated soils [2-4]. The Syrdarya river valley in this region is a complex natural complex, where soil-forming processes take place in conditions of both zonal and intrazonal character. Within the river valley and delta intrazonal soils are formed on layered mottled alluvial sediments developing under conditions of additional groundwater moistening. These soils are characterised by a high degree of salinity, presence of carbon-

ates and water-soluble salts of different chemical composition [5-7].

A special place is occupied by alluvial-meadow and riparian soils formed in the floodplain and delta part of the Syr Darya. They serve as a basis for meadows and riparian forests, and areas with the most fertile soils are actively used for rice cultivation. Along with this, solonchaks, takyr and takyr-like soils, formed in various hydrothermal conditions, are widespread in the territory. Along the right bank of the river, west of Kyzylorda city, as well as in the adjacent areas of Northern Kyzylkum along the left bank of the Syr Darya, aeolian sands prevail [8-10].

It should be noted that there is a considerable diversity of hydrological conditions in the valley, determined both by the water content of the river and the degree of distance of the floodplain areas from the channel. This affects the depth of groundwater table and, consequently, the type of soils. In the areas of irrigated agriculture, on the sites of ancient deltas and in the zones of artificial watering hydromorphic soils of swamp-meadow series prevail, which when drying up transform into meadow-meadow, deserted soils. Such diversity of natural conditions makes the region an important object for complex ecological and geobotanical studies. The floristic diversity of the desert part of the Syrdarya

river valley reflects the complex nature of its formation due to the action of many interrelated natural and anthropogenic factors [11-15]. The composition of the flora of this territory includes both species inherent in intrazonal floodplain vegetation and a wide range of representatives of pluvialine communities, in particular, psammophytic flora of Kyzylkum, penetrating into the valley from the south through sand massifs formed here in the course of long-term natural processes [16]. Human activity also has a significant impact on the formation of the floristic appearance of the region – high density of settlements, intensive land use and various forms of interference in the natural environment significantly transform the vegetation cover, giving the flora additional complexity and mosaic.

Materials and methods

Classical botanical methods, including route-reconnaissance, ecological-systematic, ecological-geographical and phytocenotic approaches, were applied during the study [17]. These methods allowed a comprehensive characterisation of the flora and vegetation of the study area.

Collection of herbarium material was carried out according to the classical method of A.K. Skvortsov [18], which ensured the accuracy of species identification and reliability of the obtained data. Determination of plant species was carried out according to floristic summaries: «Flora of Kazakhstan» [19], «Illustrated flora of Kazakhstan» [19], «Illustrated identifier...», «Identifier of plants of Central Asia» [20, 21].

The taxonomy of species was brought in accordance with the Internet resource Plantarium [22]. The available materials of herbarium collections

were also studied: Herbarium (AA) of the Institute of Botany and Phytointroduction (Almaty, Kazakhstan), Herbarium (MW) of the Lomonosov Moscow State University (Moscow, Russia; <https://plant.depo.msu.ru/>), as well as scientific papers devoted to the study of the flora of the Syr Darya River valley [23-25].

Results and discussion

As a result of field studies conducted in 2021-2023 covering the arid part of the Syrdarya river valley and adjacent territories, the presence of a set of factors that have a negative impact on the state of the vegetation cover of the region was established. Among the most significant anthropogenic impacts due to the area coverage of degraded lands, intensive grazing and ploughing of soil massifs for crops, in particular rice, prevail.

In this regard, grazing farm animals is the dominant form of landscape use in the Syrdarya valley. In the surveyed areas, especially near rural settlements (Figure 1A, B), a high level of vegetation disturbance was recorded. In such areas, vegetation is degraded to remnants of rare shrubs and single individuals of weedy and toxic plant species, including *Pseudosophora alopecuroides*, *Peganum harmala*, *Zygophyllum fabago* and *Karelinia caspia*.

As one moves away from residential settlements towards more remote areas, a gradual change in vegetation composition is observed: at the first stage, the proportion of weed species increases, but as one moves further away, their abundance tends to decrease. This distribution reflects the gradient of anthropogenic load and the degree of vegetation recovery depending on the distance from the sources of destructive impact.

Figure 1 – Landscape use near rural settlements
 A–Start of the cattle route (100-150 m from the edge of the settlement),
 B–Continuation of the cattle route (500-700 m) from the edge of the settlement)

Rice cultivation in the study region is geographically conditioned by biological peculiarities of rice crop, which require abundant and stable water supply. In this regard, its cultivation is concentrated exclusively within the Syrdarya river valley. However, long-term extensive use of agricultural land without observing agrotechnical norms, especially crop rotation rules, has led to a significant deterioration of soil conditions. The most pronounced negative consequence of this approach was secondary salinisation of soil horizons, which, in turn, caused a decrease in land productivity and their subsequent exclusion from agricultural turnover.

Assessment of the current state of unused land within the study area indicates a significant spread of degradation processes. According to statistical data of 2001, under the influence of cumulative negative factors, including mismanagement of land (21,159 ha), secondary salinisation (19,320 ha) and waterlogging (22,296 ha), 62,775 ha were taken out of agricultural turnover, which constituted 21.83% of the total area of irrigated land. To date, including arid areas of the Syrdarya river valley, the area of abandoned and fallow lands in Kyzylorda province is 54,008 ha, which is equivalent to 18.78% of the total irrigated land fund (287,525 ha).

Field surveys and results of geobotanical monitoring confirm that a significant share of previously actively used land for rice cultivation is currently in fallow condition. The main reasons for this state are intensive processes of secondary salinisation, as well as limited and unstable water supply, preventing sustainable agrotechnical use of these territories.

The following agricultural lands are indicative examples of degraded plots:

- plot 3, 6th check, 3rd crop rotation (coordinates: N 45°48'739", E 61°52'488"; absolute height – 51 m, farm 'Syr-Marzhany' LLP), which has been in fallow condition for more than 10 years. The main degradation factor – pronounced secondary salinisation of soil profile;

- plot No.1, 5th crop rotation, located on the left bank terrace of the Syrdarya river (coordinates: N 45°34'356", E 61°50'313"; altitude – 76 m, 'Syr-Marzhany' LLP), not used for farmland since the termination of irrigation more than 6 years ago. The main limiting factor is the high hypsometric position, which prevents the provision of a stable water regime.

These examples illustrate the systemic nature of degradation of reclamation lands in the Syrdarya river valley, caused both by unfavourable natural and climatic conditions and the lack of effective

management in the sphere of agrarian policy, especially about the regulation of water resources and sustainable land use.

Among additional factors influencing the state of vegetation within the study area, anthropogenic and transport impacts are of particular importance.

Technogenic interference is of a local-planar nature and is associated with the construction and operation of economic, industrial and infrastructural facilities, including hydraulic structures aimed at regulating the flow of the Syrdarya River and the construction of irrigation canals. Such activities lead to the transformation of natural landscapes and disturbance of the hydrological regime of ecosystems.

Transport impacts, primarily road degradation, represent linear and localised forms of disturbance. In zones of constant transport pressure, complete or partial destruction of vegetation cover is recorded, accompanied by mechanical damage to the soil horizon and accelerated erosion.

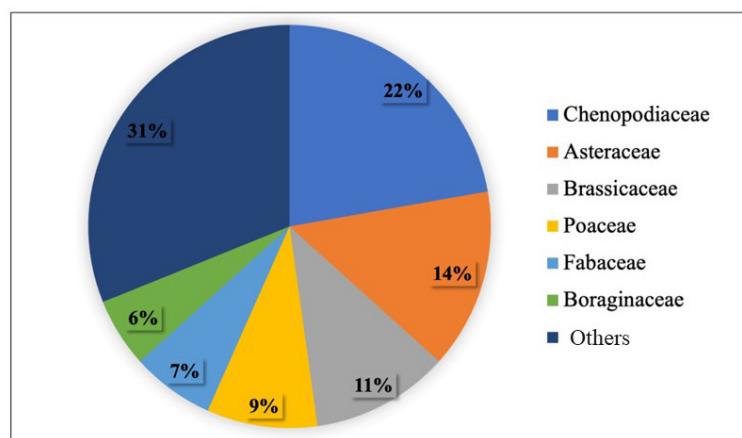
Additional destabilising factors affecting the structure and stability of vegetation cover in the arid zone of the Syrdarya valley include: Cutting of tree and shrub vegetation used to be a significant factor in the destruction of phytocenoses. However, in recent years, due to the implementation of gasification programmes for settlements, its impact has significantly decreased and does not pose such a threat as it did 10-15 years ago. Pyrogenic impacts (natural and anthropogenic fires) have a local-area character and lead to complete degradation of vegetation cover in the affected areas, disrupting succession processes and ecosystem stability. Recreational pressure, especially near settlements and along motorway arteries, contributes to soil compaction, displacement of native species and formation of disturbed communities dominated by weedy flora. Bank erosion as a result of the unstable hydrological regime of the Syrdarya River also has a negative impact on coastal ecosystems, leading to mechanical destruction of the soil profile and loss of vegetation cover in erosion-prone areas (Figure 2 A, B).

Based on the generalisation of materials obtained in the course of research work conducted both under the current project and in the course of implementation of previous grants – 'Monitoring of vegetation composition of livestock rangelands: scientific approach to sustainable use of desert pastures of Kazakhstan (on the example of Kyzylorda oblast)' (2015-2017) and 'Monitoring studies of restoration of natural vegetation on abandoned rice fields in Kyzylorda oblast'.

Figure 2 – Bank scour as a result of the hydrological regime of the river
 A – Burnt trunks of turanga trees, B – Tributary of the main channel of the Syrdarya river
 with coastal woody vegetation

Species composition of lands used for pastures
 The updated list includes 90 species of vascular plants regularly occurring on degraded pastures located in the arid zone of the Syrdarya valley. This list reflects the diversity of life forms and taxonomic breadth of the flora formed under the influence of pasture degradation and related environmental changes: Alliaceae: *Allium sabulosum*; Apiaceae: *Ferula capsica*; Asclepiadaceae: *Cynanchum sibiricum*; Asparagaceae: *Asparagus brachyphyllus*; Asteraceae: *Acroptilon repens*, *Artemisia terrae-albae*, *Cancrinia* sp., *Cousinia microcarpa*, *Hyalea* sp., *Karelinia caspica*, *Kochia iranica*, *Koelpinia linearis*, *Lactuca tatarica*, *Scorsonera* sp., *Senecio jacobaea* (в соответствии с рисунком 3А), *Taraxacum officinale*, *Xanthium strumarium*; Boraginaceae: *Arnebia decumbens*, *Lappula patula*, *Lappula semiglabra*, *Lappula spinocarpus*, *Nonnea caspica*; Brassicaceae: *Arabidopsis* sp., *Descurainie sophia*, *Isatis* sp., *Lepidium obtusum*, *Leptaleum filifolium*, *Meniocus linifolius*, *Srtigozella brevipes*, *Strigosella circinata*, *Tauschia desertorum*, *Tetracme recurvata*; Caryophyllaceae: *Acanthophyllum pungens*, *Silene nana*; Chenopodiaceae: *Atreplex tatarica*, *Bassia eriophora*, *Bassia prostrata*, *Ceratocarpus arenarius*, *Ceratocephala falcata*, *Ceratocephala testiculata*, *Climacoptera lanata*, *Climocaptaera brachiata*, *Corispermum declinatum*, *Halostachys belangeriana*, *Haloxylon aphyllum*, *Krascheninnikovia ceratoides*, *Krascheninnikovia ewersmanniana*, *Petrosimonia sibirica*, *Salsola arbuscula*, *Salsola arbusculiformis*, *Salsola nitraria*, *Salsola orientalis*, *Salsola tragus*, *Suaeda linifolia*; Convolvulaceae: *Convolvulus arvensis*; Cyperaceae: *Carex pachystylis*,

Carex physodes; Euphorbiaceae: *Euphorbia* sp.; Fabaceae: *Alchage kirgisorum*, *Alhagi pseudoalhagi*, *Ammodendron bifolium*, *Pseudosophora alopecuroides* (в соответствии с рисунком 3Б), *Glycyrrhiza uralensis*, *Halimodendron halodendron*; Fumariaceae: *Fumaria officinalis*; Geraniaceae: *Erodium oxyrhynchum*; Hypecoaceae: *Hypecoum parviflorum*;


Lamiaceae: *Lallemandia royleana*, *Salvia* sp.; Papaveraceae: *Roemeria refracta*; Peganaceae: *Peganum harmala*; Scrophulariaceae: *Veronica* sp.; Plumbaginaceae: *Limonium otolepis*; Poaceae: *Aeluropus littoralis*, *Anisantha tectorum*, *Bromus squarrosus*, *Eremopurum Poacynum*, *Eremopyrum orientalis*, *Eremopyrum triticeum*, *Leymus multi-caulis*, *Phragmites australis*; Polygonaceae: *Callogonium aphyllum*; Ranunculaceae: *Clematis orientalis*, *Delphinium leptocarpum*; Rosaceae: *Rosa persica*; Scrophulariaceae: *Dodartia orientalis*; Solanaceae: *Hyoscyamus niger*, *Hyoscyamus pusilla*, *Lycium turkomanicum*; Tamaricaceae: *Tamarix elongate*; Zygophyllaceae: *Zygophyllum fabago* (в соответствии с рисунком 3С).

Considering that the composite list includes species growing on different edaphic types of territories disturbed as a result of grazing, the general structure of the family spectrum reflects the hierarchy of the leading taxa characteristic of the flora of the desert part of the Syrdarya river valley (in accordance with Figure 4).

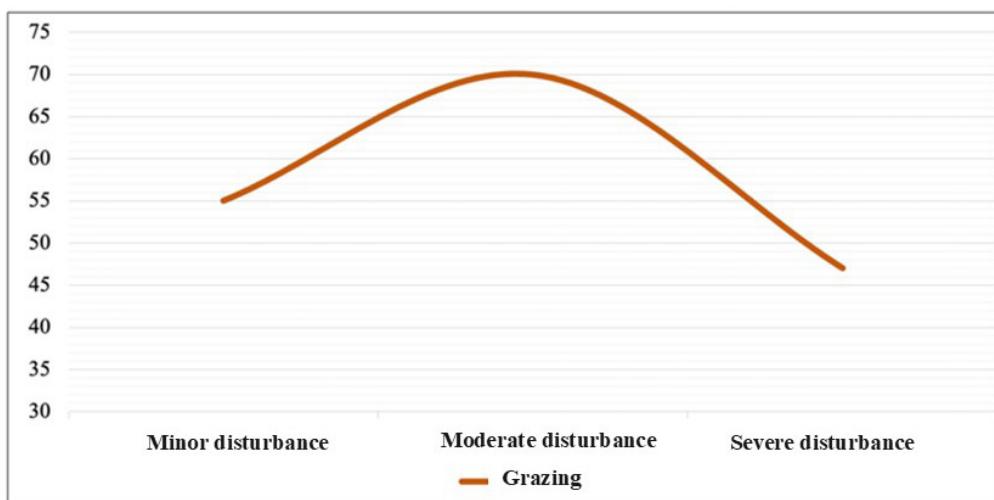

The graph illustrates changes in the species composition of vegetation on degraded lands depending on the degree of their disturbance is presented in Figure 5.

Figure 3 – Plants found in degraded pastures
(A– *Senecio jacobaea*, B– *Pseudosophora alopecuroides*, C– *Zygophyllum fabago*)

Figure 4 – Distribution of species by families

Figure 5 – Changes in vegetation species composition of pastures about the degree of site disturbance

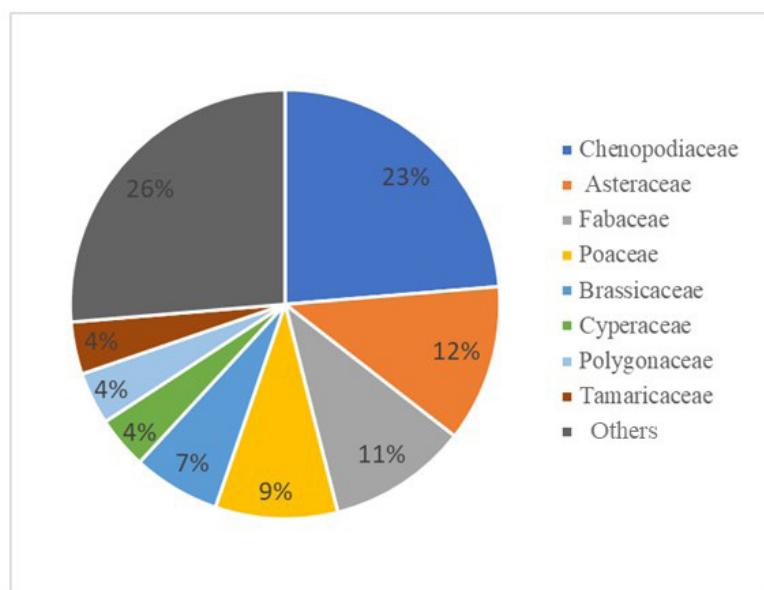
Within the framework of the grant project «Monitoring studies of revegetation of abandoned rice fields in Kyzylorda oblast: prospects for their use» (2018-2020), a list of characteristic species of the flora of fallow lands in the region was compiled. The above list included 81 species belonging to 63 genera and 27 families. The taxonomic structure indicates the dominance of the families Chenopodiaceae (22 species), Asteraceae (13 species), Fabaceae (9 species) and Poaceae (5 species), which reflects the typical spectrum of desert and semi-desert flora of the region.

In the framework of the current stage of the study, the work on the study of vegetation of fallow lands was continued and expanded by surveying abandoned rice and melon lands in other administrative districts of Kyzylorda oblast. This made it possible to supplement and update the existing list of species characteristic of fallow lands of former agricultural lands and to identify regional features of their floristic composition.

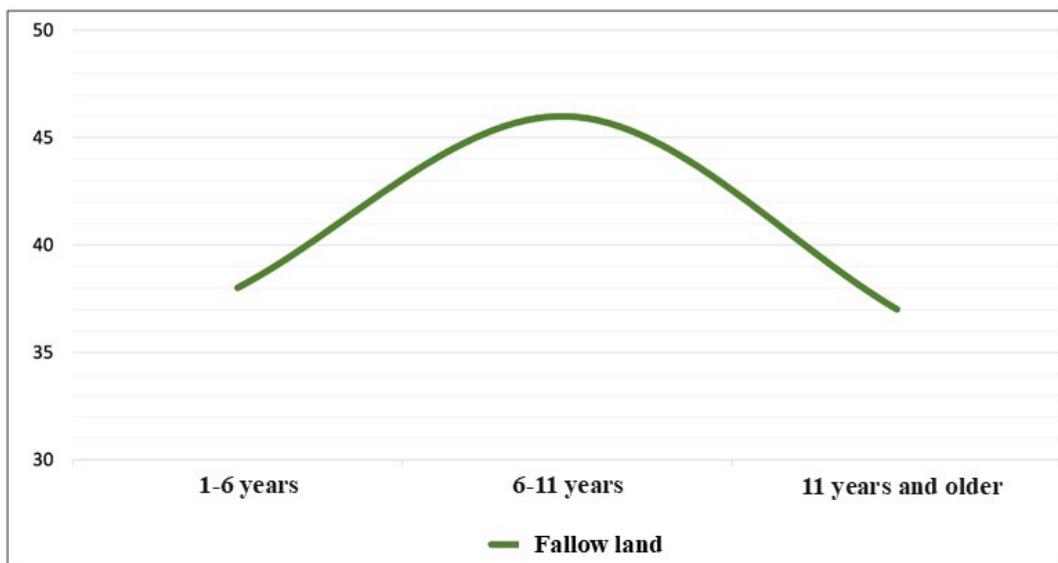
On 22 May 2023, 6 km south of Zhanakorgan towards Shieli (coordinates: N 43°59'56"; E 67°12'32"; absolute altitude – 70 m), a geobotanical description of the site of an old deposit, which is more than 30 years old, was carried out. In the surveyed area, a secondary phytocoenosis community of licorice-briar type has formed, dominated by *Rosa persica* Michx. ex Juss. and *Glycyrrhiza glabra* L., and *Halimodendron halodendron* (Pall.) Voss is also present. The community contains 27 vascular plant species, and the total projective cover is 60-65%, indicating a fairly high degree of revegetation.

In contrast to the floristic composition of perennial deposits of rice fields of the Kazalinsk massif, only one species of the Chenopodiaceae family – *Ceratocarpus utriculosus* Bluket ex Krylov – was recorded at this site. The greatest species diversity is represented by the family Brassicaceae, including 8 species, including *Tauschia lasiocarpa*, *Chorispora tenella*, *Camelina* sp., *Cardaria* sp., *Descurainia sophia*, *Diptichocarpus strictus*, *Litwinowia tenuissima*, and *Goldbachia* sp. The families Poaceae (*Aeluropus littoralis*, *Eremopyrum bonaepartis*, *Eragrostis minor*) and Ranunculaceae (*Ceratocephala*, *Consolida*, *Ranunculus*) are represented by three species each. Other families have 1-2 species, which reflects the specificity of phytocenotic diversity at the site with a long fallow period and slightly saline soils.

Notable differences in the floristic composition of fallow lands located in different areas of the Syrdarya valley are due not only to the significant


geographical distance between the sites, but also to the peculiarities of soil-edaphic conditions, primarily the degree of soil salinity. Thus, the above-analysed site near the town of Zhanakorgan, characterised by the dominance of representatives of the Brassicaceae family and the presence of species typical of slightly saline soils, geobotanically belongs to the Turkestan floristic region. This is explained by its relative proximity to the foothills of the Syrdarya Karatau and the absence of pronounced salinisation, in contrast to most of the surveyed areas belonging to the Kyzylorda floristic region, where saline and saline soils prevail.

It should be noted that in previous periods the main focus was on the study of vegetation of fallow rice fields in Kazaly district. However, under the current grant, geobotanical surveys were expanded to include new sites in other administrative districts of Kyzylorda region. Despite the limited scope of field surveys due to the broad focus of the project, the previously identified trends in the hierarchy of the leading families were confirmed, as presented in the summarised analysis (Figure 6).


Thus, a total of 77 species of higher vascular plants were identified during the grant, which surveyed abandoned rice fields of varying degrees and durations of fallow:—Asclepiadaceae: *Cynanchum sibiricum*; Asteraceae: *Artemisia terrae-albae*, *Acroptilon repens*, *Cirsium arvense*, *Inula britannica*, *Karelinia caspia*, *Lactuca tatarica*, *Saussurea salsa*, *Senecio jacobaea*, *Xanthium strumarium*; Boraginaceae: *Argusia sibirica*; Brassicaceae: *Descurainia sophia*, *Cardaria draba*, *Chorispora tenella*, *Lepidium obtusum*, *Strigosella circinata*; Capparaceae: *Capparis herbacea*; Chenopodiaceae: *Atriplex tatarica*, *Climacoptera aralensis*, *Climacoptera brachiata*, *Climacoptera lanata*, *Halocnemum strobilaceum*, *Halostachys belangeriana*, *Kalidium caspicum*, *Kalidium foliatum*, *Petrosimonia sibirica*, *Pyankovia brachiata*, *Suaeda altissima*, *Suaeda crassifolia*, *Suaeda linifolia*, *Suaeda microphylla*, *Atriplex sagittata*, *Kochia iranica*, *Climacoptera lanata*, *Kochia prostrate*; Convolvulaceae: *Convolvulus arvensis*; Cyperaceae: *Bolboschoenus maritimus*, *Bolboschoenus maritimus* var. *compactus*; Cuscutaceae: *Cuscuta campestris*; Elaeagnaceae: *Elaeagnus oxyacarpa*, *Elaeagnus angustifolia*; Euphorbiaceae: *Euphorbia jaxartica*; Fabaceae: *Alhagi pseudalhagi*, *Glycyrrhiza glabra*, *Goebelia pachycarpa*, *Lotus corniculatus*, *Medicago sativa*, *Sphaerophysa salsula*, *Halimodendron halodendron*, *Melilotus albus*; Frankeniaceae: *Frankenia hirsuta*; Hypecoaceae: *Hypecoum parviflorum*; Iridaceae: *Iris tenuifolia*; Juncaceae: *Juncus jaxarticus*; Lythraceae: *Lythrum*

salicaria; Nitrariaceae: *Nitraria schoberi*; Plumbaginaceae: *Limonium otolepis*; Poaceae: *Aeluropus littoralis*, *Calamagrostis pseudophragmites*, *Crypsis aculeata*, *Eremopyrum bonaepartis*, *Eremopyrum orientale*, *Lasiagrostis splendens*, *Phragmites australis*; Polygonaceae: *Polygonum arenarium*, *Polygonum aviculare*, *Polygonum patulum*; Scroph-

ulariaceae: *Dodartia orientalis*; Solanaceae: *Lycium dasystemum*, *Lycium ruthenicum*; Tamaricaceae: *Tamarix hispida*, *Tamarix ramosissima*, *Tamarix elongata*; Zygophyllaceae: *Zygophyllum fabago*, *Zygophyllum oxianum*. Variation of quantitative composition depending on the terms of fallow is shown in Figure 7.

Figure 6 – Taxonomic composition of vegetation families of the studied rice deposits (2021-2023)

Figure 7 – Dynamics of vegetation species composition of abandoned rice fields depending on fallow dates

Thus, the dynamics of vegetation species composition on rice paddies depending on the duration of their non-use demonstrates parabolic dependence, which allows us to consider this regularity as a potential basis for the construction of predictive models and scales for assessing the state of vegetation at specific sites.

Since during the project implementation the data on rice deposits were mainly clarified and supplemented based on previously obtained results, the main focus of the present stage of research work was on studying the floristic composition of abandoned cucurbits. The table presents the species composition of vegetation of cucurbits located in the desert part of the Syrdarya river valley, established during the field surveys in 2021-2023.

Analysis of the obtained data showed that the floristic composition of the vegetation of abandoned melon lands includes 47 species belonging to 20 botanical families. The highest species diversity (Figure

8) was observed in the Chenopodiaceae family (19%), followed by Brassicaceae and Fabaceae (10% each), Asteraceae (8%) and Poaceae (6%). The remaining families are represented by 2-3% of the total number of species. In terms of life forms, perennial plants predominate – 45% (21 species), while the share of annuals is 32% (15 species), which reflects the characteristic features of phytocenoses of disturbed desert agro-landscapes. In general, the taxonomic structure of the leading families of cucurbits is like the family spectrum of the flora of the floodplain zone of the Syrdarya River. In both cases, the Chenopodiaceae family retains the leading position, but there are differences in the hierarchy of other taxa. Thus, in the studied deposits, Brassicaceae and Fabaceae occupy the second and third places by the number of species, which is explained by the abundance of weed forms, whereas in floodplain communities they correspond to Asteraceae and Poaceae, typical for most arid regions of Kazakhstan.

Table 1 – Species composition of abandoned gourds in the desert part of the Syrdarya river valley

No	Species	Life form	Economic significance
1	2	3	4
1. Asclepiadaceae			
1	<i>Cynanchum sibiricum</i> Willd.	Perennial	Weedy
2. Asteraceae			
2	<i>Acroptilon repens</i> (L.) DC.	Perennial	Weedy, poisonous
3	<i>Artemisia terrae-albae</i> Krasch.	Small subshrub	Forage
4	<i>Karelinia caspia</i> (Pall.) Less	Perennial	Medicinal
5	<i>Lactuca tatarica</i> (L.) C.A. Mey.	Perennial	Weedy
3. Boraginaceae			
6	<i>Arnebia decumbens</i> (Vent.) Coss. & Kralik	Annual	
7	<i>Nonea caspica</i> (Willd.) G. Don	Annual	
4. Brassicaceae			
8	<i>Cardaria pubescens</i> (C.A. Mey.) Jarm.	Perennial	Weedy
9	<i>Chorispora tenella</i> (Pall.) DC.	Annual	Weedy
10	<i>Lepidium obtusum</i> Basiner	Perennial	
11	<i>Strigosella circinata</i> (Bunge) Botsch.	Annual	
12	<i>Strigosella trichocarpa</i> (Boiss. et Buhse) Botsch.	Annual	Weedy
5. Capparaceae			
13	<i>Capparis herbacea</i> Willd.	Subshrub	Edible
6. Chenopodiaceae			
14	<i>Atriplex sagittata</i> Borkh.	Annual	
15	<i>Climacoptera brachiata</i> (Pall.) Botsh.	Annual	Forage
16	<i>Climacoptera lanata</i> (Pall.) Botsch.	Annual	
17	<i>Kalidium caspicum</i> (L.) Ung.-Sternb.	Shrub	Forage
18	<i>Bassia odontoptera</i> (Schrenk) Freitag & G. Kadereit	Annual	

Continuation table

№	Species	Life form	Economic significance
1	2	3	4
19	<i>Petrosimonia sibirica</i> (Pall.) Bunge	Annual	Forage
20	<i>Salsola nitraria</i> Pall.	Annual	
21	<i>Salsola tragus</i> L.	Annual	Forage
22	<i>Suaeda microphylla</i> Pall.	Subshrub	
	7. Convolvulaceae		
23	<i>Convolvulus arvensis</i> L.	Perennial	Weedy
	8. Cuscutaceae		
24	<i>Cuscuta lupuliformis</i> Krock.	Annual	
	9. Euphorbiaceae		
25	<i>Euphorbia jaxartica</i> (Prokh.) Krylov	Perennial	Medicinal
	10. Fabaceae		
26	<i>Alhagi kirghisorum</i> Schrenk	Subshrub	Medicinal
27	<i>Alhagi pseudoalchagi</i> (Bieb.) Fisch.	Subshrub	Medicinal
28	<i>Glycyrrhiza uralensis</i> Fisch. ex DC.	Perennial	
29	<i>Halimodendron halodendron</i> (Pall.) Voss	Shrub	
30	<i>Pseudosophora alopecuroides</i> (L.) Sweet	Perennial	Weedy
	11. Fumariaceae		
31	<i>Fumaria officinalis</i> L.	Perennial	
	12. Peganaceae		
32	<i>Peganum harmala</i> L.	Perennial	Medicinal
	13. Plumbaginaceae		
33	<i>Limonium otolepis</i> (Schrenk) O. Kuntze	Perennial	Tannin
	14. Poaceae		
34	<i>Aeluropus littoralis</i> (Gouan) Parl.	Perennial	Forage
35	<i>Phragmites australis</i> (Cav.) Trin. ex Steud.	Perennial	Technical
36	<i>Eremopyrum bonaepartis</i> (Spreng.) Nevski	Annual	
	15. Polygonaceae		
37	<i>Polygonum pseudoarenarium</i> Klokov	Perennial	
38	<i>Polygonum patulum</i> M. Bieb.	Perennial	
39	<i>Polygonum aviculare</i> L	Perennial	Weedy
	16. Ranunculaceae		
40	<i>Clematis orientalis</i> L.	Shrub	
41	<i>Ceratocephala falcata</i> (L.) Cramer	Annual	
	17. Scrophulariaceae		
42	<i>Dodartia orientalis</i> L.	Perennial	
	18. Solanaceae		
43	<i>Lycium depressum</i> Stocks	Shrub	
	19. Tamaricaceae		
44	<i>Tamarix elongata</i> Ledeb.	Shrub	Ornamental
45	<i>Tamarix ramosissima</i> Ledeb.	Shrub	Ornamental
	20. Zygophyllaceae		
46	<i>Zygophyllum fabago</i> L.	Perennial	Medicinal, poisonous
47	<i>Zygophyllum oxycarpum</i> Popov	Perennial	

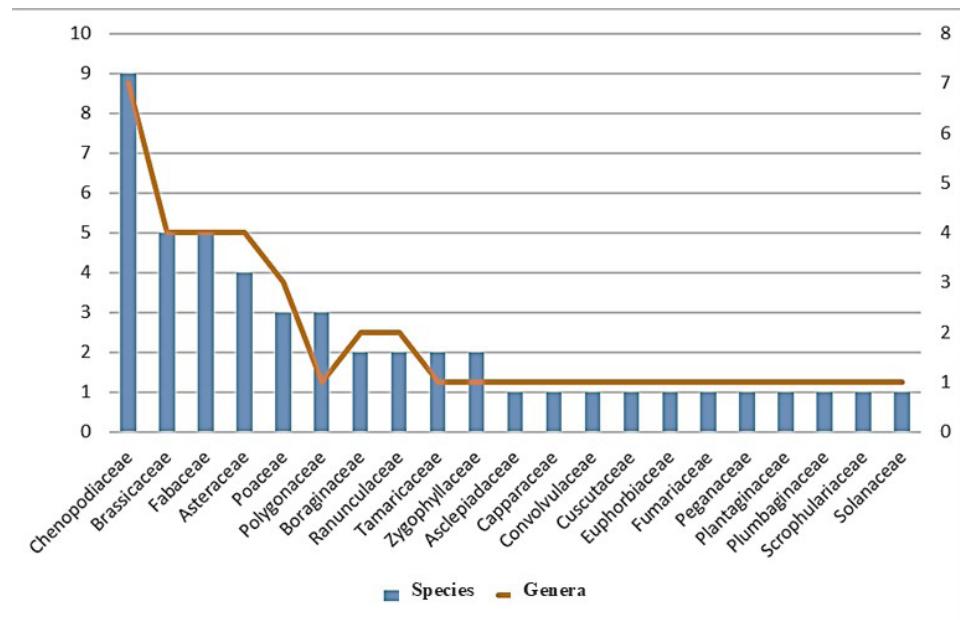


Figure 8 – Family spectrum of abandoned gourds in the desert part of the Syrdarya river valley

In the surveyed melon fields, 26 plant species with economic value were identified. Among them, weedy forms (9 species), as well as fodder and medicinal plants – 6 species each, respectively – predominate. Ornamental species are represented by two taxa, the other groups of useful plants include 1-2 species each.

In total, the anthropophilic component of the flora found in fallow areas of former rice checks and melon fields comprises 89 species, which indicates a high degree of transformation of the vegetation cover under the influence of agricultural use and subsequent self-restoration.

Conclusion

The vegetation cover of the desert part of the Syrdarya valley has undergone significant transformation under the influence of a complex of anthropogenic factors. The most destructive impact is caused by: uncontrolled grazing, intensive agricultural development (primarily rice cultivation), anthropogenic construction, transport loads and pyrogenic processes. These factors contribute to the degradation of biodiversity and replacement of natural communities by synanthropic and weedy species. Species diversity decreases with increasing disturbance, especially in the vicinity of settlements and livestock routes. The most characteristic indicators of severe degradation are as follows — *Pseudosophora alopecuroides*, *Zygophyllum fabago*,

Peganum harmala, *Karelinia caspia*. These species are displace fodder, medicinal and native plants, which worsens the ecological and economic quality of lands.

Field and geobotanical surveys in 2015-2023 revealed consistent differences in flora composition on pastures and fallow farmland (including rice and melon). Chenopodiaceae, Asteraceae and Fabaceae dominate on pastures, while the presence of Brassicaceae and Poaceae is increasing in some cases on old fallow lands. Plots with many years of non-cultivation show tendencies to restore natural phytocenoses, especially in areas with reduced salinity. Indicator species of succession include: *Halimodendron halodendron*, *Glycyrrhiza glabra*, *Rosa persica* (in typical communities), as well as *Ceratocarpus utriculosus* и *Descurainia sophia* in the early stages. The family spectrum of flora of pasture and fallow ecosystems corresponds to the typical hierarchy of arid territories of South Kazakhstan, where Chenopodiaceae retain the leading position. However, in zones with lower salinity and proximity to foothills, the role of Brassicaceae and Poaceae is increasing, which indicates the importance of taking into account soil and orographic factors in ecological assessment.

Graphical modelling of the dynamics of species composition depending on the period of fallow showed a parabolic dependence, allowing the use of such regularities for predicting the natural recovery of vegetation and optimising the timing of phytomelioration interventions.

Funding

This research was funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan (Grant No. BR24992814).

Authors' contributions

Vesselova P.V., Kudabayeva P.V. – field work, conducting the research, approval of the final version of the article, Abdildanov D. Sh., Ussen S. – field work, statistical data processing, conducting the research.

References

- 1 Рачковская Е.И. Принципы и основные единицы районирования // Ботаническая география Казахстана и Средней Азии (в пределах пустынной области) / Е.И. Рачковская, И.Н. Сафонова, Е.А. Волкова. (Под редакцией Е.И. Рачковской, Е.А. Волковой, В.Н. Храмцова). – СПб., 2003. – С.172–195.
- 2 Daminova N. E., Beshko N. Y. Flora of Sirdarya region //Spiraeaanthus. – 2024. – №. 1. – P. 116-119.
- 3 Vanselow K. A., Zandler H., Samimi C. Time series analysis of land cover change in dry mountains: insights from the Tajik Pamirs//Remote Sensing. – 2021. – Vol. 13. – №. 19. – P. 3951. DOI <https://doi.org/10.3390/plants13162275>
- 4 Seidl A. Tremetsberger K., Pfanzelt S., Blattner F. R., Neuffer B., Herbert Hurka, Alexander Shmakov, Oyunsetseg Battalai, Anze Zerdoner Calasan, PolinaV. Vesselova, Karl-Georg Bernhardt The phylogeographic history of *Krascheninnikovia* reflects the development of dry steppes and semi-deserts in Eurasia //Scientific Reports. – 2021. – Vol. 11. – №. 1. – P. 6645. <https://doi.org/10.1038/s41598-021-85735-z>
- 5 Luneva N.N. Regional features of the weed flora of geographically remote territories. Science and innovations 2021: development directions and priorities: Proceedings of the International Conference. Melburn. 2021; p. 124-131.
- 6 Osmonali BB, Vesselova PV, Kudabayeva G, Duisenbayev S, Taukebayev O, Zulpykhanov K, Ussen S, Abdildanov DS. 2024a. Salt resistance of species of the Chenopodiaceae family (Amaranthaceae s.l.) in the desert part of the Syrdarya River Valley, Kazakhstan. Biodiversitas 25 (11): 4162-4170. DOI: 10.13057/biodiv/d251115.
- 7 Шорманова АА., Кудабаева Г.М., Гемеджиева Н.Г., Веселова П.В. и др. Государственный кадастр растений Кызылординской области (Конспект высших сосудистых растений). – Алматы, 2013; 410 с.
- 8 Абд Эль-Вахаб Р.Х., Аль-Рашид А.Р., Аль-Дусари А. Влияние антропогенного воздействия на растительность и почвы эоловых форм рельефа в аридных условиях //Аридные экосистемы, 2018; 24,2(75): 23-38.
- 9 Веселова П.В., Кудабаева Г.М., Осмонали Б.Б., Шорманова А.А., Нелина Н.В., Абдилданов Д.Ш., Усен С. Антропофильный элемент флоры нарушенных земель долины реки Сырдарьи (в пределах Кызылординской области). – Алматы, 2023.–72с.
- 10 Abduova A. A., Imanberdiyeva A. M., Koshachmetova A. M. Research and assessment of ornamental and rare plants of "Syr darya-Turkestan regional nature park" //Industrial Technologies and Engineering (ICITE-2017). – 2017. – P. 357-362.
- 11 Dimeyeva L. A., Breckle S. W., Wucherer W. Flora of the Aralkum //Aralkum-a Man-Made Desert: The Desiccated Floor of the Aral Sea (Central Asia). – 2012. – P. 109-126.
- 12 Mamilov N. S. et al. Recent changes in fish diversity in the ancient oases of the Syr Darya River (Central Asia) //Ecologica Montenegrina. – 2025. – T. 86. – C. 119-134.
- 13 Azamov O., Khalimov S., Gulomov S., Komilova D., Kayumova Y., Rakhmonov M., Abdulatipova S., Gafurova O., Komilova K., Asrolova M., Urmonova D. Sheraliev B. (2024) Lengthweight relationships and condition factor of 30 species from the Upper Syr Darya drainage, Uzbekistan. Turkish Journal of Zoology, 48(7), 685–691. <https://doi.org/10.55730/1300-0179.3206>
- 14 Kasimgaliev S., Kelinbaeva R., Sultanov M., Zhunisbekova N. Geoinformation support, analysis, evaluation and forecasting of the use of land resources of Kyzylorda region //Bulletin of the LN Gumilyov Eurasian National University. Chemistry. Geography. Ecology Series. – 2023. – Vol. 144. – №. 3. – P. 105-118. DOI: <https://doi.org/10.32523/2616-6771-2023-144-3-105-118>
- 15 Osmonali, B. B., Kusmangazinov, A. B., & Kurmanbayeva, M. S. (2022). Economically valuable species growing in Northern Kyzylkum and their significance for practical use. Eurasian Journal of Ecology, 71(2), 81–93. <https://doi.org/10.26577/EJE.2022.v71.i2.08>
- 16 Stikhareva T., Ivashchenko A., Kirillov V., Rakhimzhanov A. Floristic diversity of threatened woodlands of Kazakhstan formed by *Populus pruinosa* Schrenk // Turk J Agric For, vol 45 (2021): 165-178.
- 17 Артаев О.Н., Башмаков Д.И., Безина О.В. Методы полевых экологических исследований: учеб, пособие. –Саранск: Изд-во Мордов. ун-та, 2014.– 412 с.
- 18 Скворцов А.К. Гербарий // Пособие по методике и технике. М., 1977. – 199 с.
- 19 Флора Казахстана: – Т. 1–9. / Ред. Н.В. Павлов. – Алма-Ата: Изд-во АН КазССР, 1956–1966.
- 20 Иллюстрированный определитель растений Казахстана Т. 1–2. / Ред. В.П. Голосков. – Алма-Ата: Наука «Казахской ССР», 1969–1972.
- 21 Определитель растений Средней Азии – Т. I–XI. Ташкент, 1968–1993.
- 22 Плантариум: открытый онлайн атлас-определитель растений и лишайников России и сопредельных стран. 2007–2024. – [Electronic resource]. – Access mode: <http://www.plantarum.ru/>

23 Osmonali B.B.; Vesselova P.V.; Kudabayeva G.M.; Skaptsov M.V.; Shmakov, A.I.; Friesen, N. Phylogeny and Flow Cytometry of the Genus *Kalidium* Moq. (Amaranthaceae s.l.) in Kazakhstan. *Plants* 2023, 12, 2619. <https://doi.org/10.3390/plants12142619>

24 Байбулов А.Б. Оценка современного состояния растительности долины и дельты реки Сырдарьи и с использованием ГИС технологий: дис.. канд. биол. наук/А.Б. Байбулов. – 2009. –131с.

25 Dimeyeva, L.; Islamgulova, A.; Permitina, V.; Ussen, K.; Kerdyashkin, A.; Tsychuyeva, N.; Salmukhanbetova, Z.; Kurmantayeva, A.; Iskakov, R.; Imanalinova, A.; et al. Plant Diversity and Distribution Patterns of *Populus pruinosa* Schrenk (Salicaceae) Floodplain Forests in Kazakhstan. *Diversity* 2023, 15, 797. <https://doi.org/10.3390/d15070797>

References

- 1 Abd El-Wahab, R. H., Al-Rashid, A. R., & Al-Dusari, A. (2018). Effects of anthropogenic impacts on vegetation and soils of aeolian landforms in arid environments. *Arid Ecosystems*, 24(2), 23–38.
- 2 Abduova, A. A., Imanberdiyeva, A. M., & Koshachmetova, A. M. (2017). Research and assessment of ornamental and rare plants of “Syr darya–Turkestan regional nature park”. In *Industrial Technologies and Engineering (ICITE-2017)* (pp. 357–362).
- 3 Artaev, O. N., Bashmakov, D. I., & Bezina, O. V. (2014). Methods of field ecological research: Textbook. Saransk: Izdvo Mordovian University, 412p.
- 4 Azamov, O., Khalimov, S., Gulomov, S., Komilova, D., Kayumova, Y., Rakhmonov, M., Abdulatipova, S., Gafurova, O., Komilova, K., Asrolova, M., Urmonova, D., & Sheraliev, B. (2024). Length–weight relationships and condition factor of 30 species from the Upper Syr Darya drainage, Uzbekistan. *Turkish Journal of Zoology*, 48(7), 685–691. DOI: <https://doi.org/10.55730/1300-0179.3206>.
- 5 Baibulov, A. B. (2009). Assessment of the current state of vegetation of the Syrdarya river valley and delta and using GIS technologies (Cand. diss.). Alma-Ata.
- 6 Daminova, N. E., & Beshko, N. Y. (2024). Flora of Sirdarya region. *Spiraeanthus*, (1), P.116–119.
- 7 Definitel of Plants of Central Asia (1968–1993). Vol. I–XI. Tashkent: [publishing house].
- 8 Dimeyeva, L., Islamgulova, A., Permitina, V., Ussen, K., Kerdyashkin, A., Tsychuyeva, N., Salmukhanbetova, Z., Kurmantayeva, A., Iskakov, R., Imanalinova, A., ... & others. (2023). Plant diversity and distribution patterns of *Populus pruinosa* Schrenk (Salicaceae) floodplain forests in Kazakhstan. *Diversity*, 15, Article 797. <https://doi.org/10.3390/d15070797>.
- 9 Dimeyeva, L. A., Breckle, S. W., & Wucherer, W. (2012). Flora of the Aralkum. In *Aralkum—a Man-Made Desert: The Desiccated Floor of the Aral Sea (Central Asia)* (pp. 109–126).
- 10 Goloskokov, V. P. (Ed.). (1969–1972). Illustrated identifier of plants of Kazakhstan (Vols. 1–2). Alma-Ata: Nauka Kazakh SSR.
- 11 Kasimgaliev, S., Kelinbaeva, R., Sultanov, M., & Zhunisbekova, N. (2023). Geoinformation support, analysis, evaluation and forecasting of the use of land resources of Kyzylorda region. *Bulletin of the LN Gumilyov Eurasian National University. Chemistry. Geography. Ecology Series*, 144(3), 105–118. DOI: <https://doi.org/10.32523/2616-6771-2023-144-3-105-118>.
- 12 Luneva, N. N. (2021). Regional features of the weed flora of geographically remote territories. In *Science and innovations 2021: Development directions and priorities: Proceedings of the International Conference* (pp. 124–131). Melburn.
- 13 Mamilov, N. S., et al. (2025). Recent changes in fish diversity in the ancient oases of the Syr Darya River (Central Asia). *Ecologica Montenegrina*, 86, 119–134.
- 14 Osmonali, B. B., Kusmangazinov, A. B., & Kurmanbayeva, M. S. (2022). Economically valuable species growing in Northern Kyzylkum and their significance for practical use. *Eurasian Journal of Ecology*, 71(2), 81–93. DOI: <https://doi.org/10.26577/EJE.2022.v71.i2.08>.
- 15 Osmonali, B. B., Vesselova, P. V., Kudabayeva, G., Duisenbayev, S., Taukebayev, O., Zulpykhanov, K., Ussen, S., Abdiil-danov, D. S. (2024a). Salt resistance of species of the Chenopodiaceae family (Amaranthaceae s.l.) in the desert part of the Syrdarya River Valley, Kazakhstan. *Biodiversitas*, 25(11), 4162–4170. DOI: <https://doi.org/10.13057/biodiv/d251115>.
- 16 Osmonali, B. B., Vesselova, P. V., Kudabayeva, G. M., Skaptsov, M. V., Shmakov, A. I., & Friesen, N. (2023). Phylogeny and flow cytometry of the genus *Kalidium* Moq. (Amaranthaceae s.l.) in Kazakhstan. *Plants*, 12, Article 2619. <https://doi.org/10.3390/plants12142619>.
- 17 Pavlov, N. V. (Ed.). (1956–1966). Flora of Kazakhstan (Vols. 1–9). Alma-Ata: Academy of Sciences of the Kazakh SSR.
- 18 Plantarium. (2007–2024). Plantarium: Open online atlas-detector of plants and lichens of Russia and neighbouring countries [Electronic resource]. <http://www.plantarium.ru/> (access date: 11.06.2025).
- 19 Rachkovskaya, E. I., Safranova, I. N., & Volkova, E. A. (2003). Principles and basic units of zoning. In E. I. Rachkovskaya, E. A. Volkova, & V. N. Khratsov (Eds.), *Botanical geography of Kazakhstan and Central Asia (within the desert region)* (pp. 172–195).
- 20 Seidl, A., Tremetsberger, K., Pfanzelt, S., Blattner, F. R., Neuffer, B., Hurka, H., Shmakov, A., Batlai, O., Zerdoner Calasan, A., Vesselova, P. V., & Bernhardt, K.-G. (2021). The phylogeographic history of *Krascheninnikovia* reflects the development of dry steppes and semi-deserts in Eurasia. *Scientific Reports*, 11(1), 6645. <https://doi.org/10.1038/s41598-021-85735-z>.
- 21 Shormanova, A. A., Kudabayeva, G. M., Gemedzhiyeva, N. G., Vesselova, P. V., & others. (2013). State cadastre of plants of Kyzylorda oblast (Prospectus of higher vascular plants). Almaty.
- 22 Skvortsov, A. K. (1977). Herbarium: A manual on methodology and technique.– 199p.
- 23 Stikhareva, T., Ivashchenko, A., Kirillov, V., & Rakhimzhanov, A. (2021). Floristic diversity of threatened woodlands of Kazakhstan formed by *Populus pruinosa* Schrenk. *Turkish Journal of Agriculture and Forestry*, 45, 165–178.

24 Vanselow, K. A., Zandler, H., & Samimi, C. (2021). Time series analysis of land cover change in dry mountains: Insights from the Tajik Pamirs. *Remote Sensing*, 13(19), 3951. DOI: <https://doi.org/10.3390/plants13162275>.

25 Vesselova, P. V., Kudabayeva, G. M., Osmonali, B. B., Shormanova, A. A., Nelina, N. V., Abdildanov, D. S., & Ussen, S. (2023). Anthropophilous element of the flora of disturbed lands of the Syr Darya river valley (within Kyzylorda oblast). Almaty.

Information about authors:

Vesselova Polina – Candidate of Biological Sciences (C. sc), head of the Laboratory of flora of higher plants RSE REM “Institute of Botany and Phytointroduction” FWC MENR RK, Timiryazev street, 36 “D”, 050040, Almaty, Kazakhstan; e-mail: pol_ves@mail.ru.

Kudabayeva Gulmira – Candidate of Biological Sciences (C. Sc), Leading Researcher, Laboratory of Higher Plant Flora, RSE REM “Institute of Botany and Phytointroduction” FWC MENR RK, Timiryazev street, 36 “D”, 050040, Almaty, Kazakhstan; e-mail: kgm_anita@mail.ru.

Abdildanov Daulet – Junior Researcher at the Laboratory of Higher Plant Flora, RSE REM “Institute of Botany and Phytointroduction” FWC MENR RK, Timiryazev street, 36 “D”, 050040, Almaty, Kazakhstan; e-mail: abdildanov00@mail.ru;

Ussen Serikbay – Junior Researcher at the Laboratory of Higher Plant Flora, RSE REM “Institute of Botany and Phytointroduction” FWC MENR RK, Timiryazev street, 36 “D”, 050040, Almaty, Kazakhstan; e-mail: ussen.s@mail.ru;

Авторлар туралы мәлімет:

Веселова Полина Васильевна – биология гылымдарының кандидаты, Ботаника және фитоинтродукция институты Жогары сатыдағы өсімдіктер флорасы зертханасының меңгерушісі (Алматы, Қазақстан, e-mail: pol_ves@mail.ru);

Кудабаева Гульмира Маuletovna – биология гылымдарының кандидаты, Ботаника және фитоинтродукция институты Жогары сатыдағы өсімдіктер флорасы зертханасының жетекші гылыми қызметкері (Алматы, Қазақстан, e-mail: kgm_anita@mail.ru);

Абдилданов Даulet Шарипханович – Ботаника және фитоинтродукция институты жогары сатыдағы өсімдіктер флорасы зертханасының кіші гылыми қызметкері (Алматы, Қазақстан, e-mail: abdildanov00@mail.ru);

Усен Серикбай – Ботаника және фитоинтродукция институты жогары сатыдағы өсімдіктер флорасы зертханасының кіші гылыми қызметкері (Алматы, Қазақстан, e-mail: ussen.s@mail.ru).

Сведения об авторах:

Веселова Полина Васильевна – кандидат биологических наук, заведующая лабораторией флоры высших растений, Институт ботаники и фитоинтродукции (Алматы, Казахстан, e-mail: pol_ves@mail.ru);

Кудабаева Гульмира Маuletовна – кандидат биологических наук, ведущий научный сотрудник лаборатории флоры высших растений, Институт ботаники и фитоинтродукции (Алматы, Казахстан, e-mail: kgm_anita@mail.ru);

Абдилданов Даulet Шарипханович – младший научный сотрудник лаборатории флоры высших растений, Институт ботаники и фитоинтродукции (Алматы, Казахстан, e-mail: abdildanov00@mail.ru);

Усен Серикбай – младший научный сотрудник лаборатории флоры высших растений, Институт ботаники и фитоинтродукции (Алматы, Казахстан, e-mail: ussen.s@mail.ru).

Received June 19, 2025

Accepted August 20, 2025