УДК 575.633.11

А.А. Токубаева*, К.К. Шулембаева Казахский национальный университет им. аль-Фараби, Казахстан, г. Алматы *E-mail: anar.tokubaeva@mail.ru

Идентификация и хромосомная локализация генов устойчивости линий мягкой пшеницы к листовой ржавчине

Популяция гибридов F2 расщеплялась на устойчивые и восприимчивые растения, соответствующие ди- и моногенному наследованию, кроме гибридов, полученных с участием изогенных линий Lr1, Lr10, Lr26, Lr28, Lr29, Lr34, Lr39, Lr50 с короткостебельным образцом СИМ79/279 и Lr1, Lr9, Lr10, Lr28, Lr29, Lr34, Lr39, Lr50 к-24/20989. Устойчивость короткостебельных образцов линии СИМ79/279 и к-24/20989 наследуется по типу эпистаза и комплементарного взаимодейстия генов. Гены устойчивости к листовой ржавчине СИМ79/279 аллельны высокоэффективным тестерным генам Lr1, Lr10, Lr26, Lr28, Lr29, Lr34, Lr39, Lr50, а линия к-24/20989 - Lr1, Lr9, Lr10, Lr28, Lr29, Lr39, Lr50 сорта Thatcher. Основные гены высокой устойчивости к листовой ржавчине линии СИМ79/279 и к-24/20989 локализованы в хромосомах 1В, 1А и 6В, 5D соответственно. У линии СИМ79/279 и к-24/20989 тип устойчивости к 56 расе листовой ржавчины показали "0" баллов. Причем обе иммунные линии оказались гетерозиготными по нескольким генам устойчивости.

Ключевые слова: пшеница, бурая ржавчина, тестер, аллель, ген, локализация, идентификация.

A.A. Tokubayeva, K.K. Shulembaeva Identification and chromosomal location of genes resistance to leaf rust in lines of common wheat

Resistance of short stature sample line SIM79/279 and k-24/20989 inherited by the type of epistasis and complementary interaction of genes. Genes resistance to leaf rust SIM79/279 allelic to highly effective tester genes , Lr10, Lr26, Lr28, Lr29, Lr34, Lr39, Lr50 and line k-24/20989 - Lr1, Lr9, Lr10, Lr28, Lr29, Lr39, Lr50 of variety Thatcher. Main genes high resistance to leaf rust of lines SIM79/279 and k-24/20989 have localized in chromosome 1B, 1A and 6B, 5D, respectively.

Keywords: wheat, leaf rust, tester, allele, gen, localization, identification.

А.А. Токубаева, К.К. Шулембаева Жұмсақ бидай линияларында қоңыр тат ауруына төзімді гендерді идентификациялау және хромосмалық локализациялау

Қысқасабақты линияларының СИМ79/279 және к-24/20989 төзімділігі эпистаз және комплементарлы гендердің әсер ету типі бойынша тұқымқуалайды. СИМ79/279 линиясының қоңыр татқа төзімді гендері Thatcher сортының эффективтілігі жоғары тестерлі гендеріне, Lr10, Lr26, Lr28, Lr29, Lr34, Lr39, Lr50 аллельді, ал к-24/20989 линиясы - Lr1, Lr9, Lr10, Lr28, Lr29, Lr39, Lr50 аллельді. СИМ79/279 және к-24/20989 линияларының қоңыр татқа төзімділігі бойынша жоғары негізгі гендері, сәйкесінше 1В, 1А және 6В, 5D хромосомаларында локализацияланған.

Түйін сөздер: бидай, қоңыр тат, тестер,аллель, ген, локализация, идентификация.

Бурая или листовая ржавчина (возбудитель *Puccinia triticina* Erikss, syn.: *P. recondita* Roberge: Desm. f. sp. *Tritici* Erikss) — одна из наиболее распространенных и вредоносных болезней мягкой пшеницы *Triticum aestivum* L. Ежегодные потери урожая пшеницы от поражения листовой ржавчиной в Казахстане достигают 3,5% и 4,5%, в случае, когда эпидемия развивается рано и инфекция сохраняется до полного созревания пшеницы, потери возрастают до 40-60% урожая [1-4]. Наиболее

экономически выгодным и экологически безопасным методом борьбы с листовой ржавчиной является возделывание устойчивых сортов. Создание такого рода сортов на первом этапе включает поиск доноров эффективных генов устойчивости к болезни. Большинство из них не эффективны против «современной» популяции листовой ржавчины. Высокоэффективными генами устойчивости взрослых растений в фазе флаг листа в условиях юго-востока Казахстана являются Lr9, Lr19, Lr23,

Lr24, Lr26, Lr28, и Lr29 [5-8]. При этом ген Lr19 уже потерял свою эффективность в Поволжье и Волго-Вятском регионе, отмечено появление клонов патогена, вирулентных к гену Lr24 в Поволжье, сообщается о потере эффективности гена Lr9 в Западной Сибири и на Урале [5-8].

В этой связи особое внимание должно быть уделено поиску доноров эффективных генов возрастной устойчивости (adult resistance). В генофонде местной селекции сосредоточено большое количество образцов мягкой пшеницы, устойчивых к болезни в фазе флаг-листа. Эти образцы идентифицированы достаточно давно и могут быть восприимчивы из-за изменения расовой структуры популяций *P. triticina* за последние годы. Одним из возможных путей поиска источников возрастной устойчивости рассматривается изучение коллекции местных пшениц.

Данная работа рассматривает возможности выявления разнообразия мягкой пшеницы по эффективной возрастной устойчивости к листовой ржавчине и изучения аллельности их генов с широко используемыми Lr генами изогенных линий сорта *Thatcher*.

Материалы и методы

Объекты исследования: Устойчивые к листовой ржавчине короткостебельные линии генофонда местной селекции СИМ79/279, к-24/20989 и 13 тестерных изогенных линий (Lr1, Lr9, Lr10, Lr9, Lr19, Lr24, Lr26, Lr28, Lr29, Lr34,

Lr35, Lr37, Lr39, Lr50) сорта Thatcher и гибриды F_1 и F_2 .

Методы исследования: гибридологический и генетический анализ. Устойчивость растений к листовой ржавчине оценивали по международной шкале Майнса и Джексона [9].

Результаты и их обсуждение

Генетический анализ устойчивости к листовой ржавчине растений у гибридов F_1 , полученных от скрещивания СИМ79/279 и к-24/20989 с 13 (Lr9, Lr10, Lr19, Lr24, Lr26, Lr28, Lr29, Lr34, Lr34, Lr35, Lr37, Lr39, Lr50) изогенными линиями Lr генов сорта *Thatcher*, все растения оказались устойчивыми к листовой ржавчине. В ходе оценки материала удалось обнаружить реакцию сверхчувствительности типа «0», «1» и «2» балла. Это говорит о доминантном характере наследования изучаемого признака.

В результате анализа популяции гибридов F_2 (таблица 1), полученных от самоопыления гибридов F_1 все растения расщеплялись на устойчивые и восприимчивые, соответствующие ди- и моногенному наследованию, кроме гибридов, полученных от скрещивания изогенных линий Lr1, Lr10, Lr26, Lr28, Lr29, Lr34, Lr39, Lr50 с короткостебельным образцом СИМ79/279 и Lr1, Lr9, Lr10, Lr28, Lr29, Lr34, Lr39, Lr50 с κ -24/20989.

Таблица 1 – Расщепление гибридов F_2 по устойчивости к листовой ржавчине от скрещивания линии СИМ79/279 и к-24/20989 с изогенными линиями сорта Thatcher

Комбинация скрещиваний	Число	Соотношение устойчивых растений к вос-		Значение c ²
	растен. F,	приимчивым		
	_	Фактическое	Теоретическое	
СИМ79/279 x Lr1	140	140	0	0
СИМ79/279 x Lr9	133	98:35	3:1	0,08
СИМ79/279 x Lr10	121	121	0	0
СИМ79/279 x Lr19	134	102:32	13:3	2,27
СИМ79/279 x Lr24	133	130:3	15:1	0,57
СИМ79/279 x Lr26	144	144	0	0
СИМ79/279 x Lr28	136	136	0	0
СИМ79/279 x Lr29	203	203	0	0
СИМ79/279 x Lr34	147	147	0	0
СИМ79/279 x Lr35	158	158	0	0
СИМ79/279 x Lr37	149	125:24	13:3	0,01
СИМ79/279 x Lr39	140	140	0	0

СИМ79/279 x Lr50	133	133	0	0
к-24/20989 x Lr1	121	121	0	0
к-24/20989 x Lr9	134	134	0	0
к-24/20989 x Lr10	133	133	0	0
к-24/20989 x Lr19	144	122:22	13:3	0,13
к-24/20989 x Lr24	140	110:30	13:3	0,65
к-24/20989 x Lr26	133	98:35	3:1	0,08
к-24/20989 x Lr28	121	121	0	0
к-24/20989 x Lr29	136	136	0	0
к-24/20989 x Lr34	133	134	0	0
к-24/20989 x Lr35	144	122:22	13:3	0,13
к-24/20989 x Lr37	134	134	13:3	2,27
к-24/20989 x Lr39	203	203	0	0
к-24/20989 x Lr50	147	147	0	0

Гены устойчивости к листовой ржавчине короткостебельной линии СИМ79/279 не аллельны высокоэффективным тестерным генам Lr9, Lr19, Lr24, Lr26, Lr37, Lr39, Lr50, а у линии к-24/20989 не аллельны генам Lr19, Lr24, Lr26, Lr35, Lr37, Lr39, Lr50. При этом фактические значения расщепления устойчивых и восприимчивых растений у этих гибридов соответствовали комплементарному и эпистатическому взаимодействию генов, кроме комбинации СИМ79/279 х Lr9 и к-24/20989 х Lr26, где значения хи-квадрат (χ2) соответствовали моногенному наследованию признака.

Таким образом, тип устойчивости к 56 расе листовой ржавчины линии СИМ79/279 и к-24/20989 показали "0" баллов. Причем обе иммунные линии оказались гетерозиготными по нескольким генам устойчивости.

Необходимым условием после идентификации генов устойчивости к болезням у доноров

является их хромосомная локализация. В этой связи для локализации генов устойчивости линии СИМ79/279 и к-24/20989 использовали серию моносомных линий сорта Казахстанская 126, фенотипический маркированную по определенным генам маркерам. Использование этой серии намного облегчило трудоемкий цитологический анализ при локализации генов.

Тип устойчивости к 56 расе листовой ржавчины линий СИМ79/279 и к-24/20989 показали "0" баллов. У сорта Казахстанская 126 и его моносомной серии наблюдалась сильная восприимчивость к этому виду ржавчины (тип поражения — "4" баллов).

Анализ родительских форм и гибридов F_1 . Результаты анализа гибридов F_1 , как дисомных, так и моносомных комбинаций скрещивания, показали доминантный характер наследования устойчивости взрослых растений.

Таблица 2 – Реакция родительских сортов и гибридов F, на поражения листовой ржавчиной

Гибриды	Кол-во изученных	Соотношение фенотипов	
	растений	R	S
Каз. 126	75	0	75
Линия СИМ79/279	75	75	0
Каз.126 x СИМ79/279	66	66	0
F ₁ моно Каз. 126 (1A – 7D) х СИМ79/279	78	78	0
Линия к-24/20989	75	75	0
Каз.126 х к-24/20989	62	62	0
F_{\perp} моно Каз. 126 (1A – 7D) х к-24/20989	55	55	0

Как видно, из данных таблицы 2 все гибриды F_1 оказались вирулентными к патотипам листовой ржавчины. Это свидетельствует о доминантном характере наследования изучаемого признака.

Генетический анализ гибридов F_2 . Расщепление устойчивости генотипов к листовой ржавчине в фазе флаг-листа анализировали в популяциях гибридов F_2 , полученных от самоопыления истинных моносомных гибридных гибридов F_1 .

Изучение потомства F_2 эуплоидной комбинации гибридов от скрещивания сорта Казахстанская 126 х с образцами линии СИМ79/279 и к-24/20989 соотношение вирулентных — R и восприимчивых — S фенотипов соответствовало

эпистатическому и комплементарному взаимодействию неаллельных генов. При этом значение хи-квадрат (χ^2 =1,56 и χ^2 =2,12) у эуплоидных комбинаций не превышало безошибочного прогноза стандартного значения χ^2 (таблица 3). В таблице приведены данные по критическим хромосомам.

Высокое отклонение значений хи-квадрат от теоретически ожидаемого 13:3 в популяциях по хромосомам 1В ($\chi^2=19,08$), 1А ($\chi^2=7,32$) у линии СИМ79/279 и 6В ($\chi^2=59,97$), 5D ($\chi^2=18,40$) у линии к-24/20989 позволило их считать критическими хромосомами в определении устойчивости к листовой ржавчине.

Таблица 3 – Хромосомная локализация генов устойчивости к листовой ржавчине у гибридов F_2 , полученных с участием СИМ79/279 и к-24/20989

Гибриды F ₂ по определенным хромосомам	Соотношение фенотипов		Значения χ ² при 13:3		
	R	S			
Каз.126 x СИМ79/279	234	44	1,56		
1A	180	23	7,32**		
1B	177	12	19,08***		
4B	172	25	4,75*		
Гибриды F, по определенным хромосомам	R	S	Значения χ ² при 9:7		
Каз.126 х к-24/20989	138	54	2,12		
2B	129	75	4,05*		
6B	171	68	59,97***		
5D	144	38	18,40***		
Примечание: χ^2_{st} {6,0; 9,2; 13,8 * - P<0,05; *** - P<0,001					

Гибриды по хромосомам 4B (χ^2 =4,75) и 2B $(\chi^2=4,05)$ также дали достоверное отклонение по сравнению с контрольными и другими моносомными гибридами. По-видимому, эти хромосомы несут гены модификаторы, повышающие устойчивость основных генов, локализованных в хромосомах 1B, 1A СИМ79/279 и 6B, 5D к-24/20989 соответственно. Устойчивость к листовой ржавчине остальных 15 комбинаций моносомных гибридов соответствовали к эпистатическому и комплементарному взаимодействию генов, согласно контрольным вариантам изучаемых линий. Использование комплексных методов: метод тестирование на аллельность генов, моносомного анализа и молекулярного маркирования признаков позволило нам провести глубокий генетический анализ доноров устойчивости к листовой ржавчине линий СИМ79/279 и к-24/20989.

Заключение

Изучение контрольных популяций гибридов F_2 , полученных от скрещивания сорта Казахстанская 126 х СИМ79/279 и к-24/20989 показали, что устойчивость к листовой ржавчине их наследуются по типу эпистаза и комплементарного взаимодейстия генов. Основные гены высокой устойчивости к листовой ржавчине линии СИМ79/279 и к-24/20989 локализованы в хромосомах 1В, 1А и 6В, 5D соответственно. Слабое отклонение, обнаруженное в хромосоме 4В и 2В, по-видимому, связано с действием генов модификаторов.

В результате анализа популяции гибридов F_2 , полученных от самоопыления гибридов F_1 , все растения расщеплялись на устойчивые и восприимчивые, соответствующие ди- и моногенному

наследованию, кроме гибридов, полученных от скрещивания изогенных линий Lr1, Lr10, Lr26, Lr28, Lr29, Lr34, Lr39, Lr50 с короткостебельным образцом СИМ79/279 и Lr1, Lr9, Lr10, Lr28, Lr29, Lr34, Lr39, Lr50 с к-24/20989.

Гены устойчивости к листовой ржавчине короткостебельной линии СИМ79/279 аллельны высокоэффективным тестерным генам Lr1, Lr10, Lr26, Lr28, Lr29, Lr34, Lr39, Lr50, а линии к-24/20989 Lr1, Lr9, Lr10, Lr28, Lr29, Lr34, Lr39, Lr50. При этом фактические значения расщепления устойчивых и восприимчивых растений

у этих гибридов соответствовало к комплементарному и эпистатическому взаимодействию генов, кроме комбинации СИМ79/279 х Lr9 и к-24/20989 х Lr26, где значения хи-квадрат (χ 2) соответствовало моногенному наследованию признака.

Полученные данные с использованием методов тестирования и моносомного анализа согласуются с результатами исследования по молекулярному анализу выше приведенных образцов линии пшеницы. Эти данные будут опубликованы в следующей статье.

Литература

- 1 Реалиев Ш.С., Тилеубаева Ж.С., Реалиев А.С., Агабаева А.Ч. Отбор ценных сортов зерновых культур среди зарубежного селекционного материала (методические подходы) // Материалы международной научно-практической конференции, посвященной 90-летию со дня рождения Ж.Т.Джиембаева «Современные проблемы защиты и карантина растений». Алматы: Алейрон, 2005. C.255-261.
- 2 Рсалиев Ш.С., Рсалиев А.С. Дифференциация патотипов стеблевой ржавчины в Казахстане // Тезисы стендовых докладов «Вторая Центрально-Азиатская конференция по зерновым культурам», 13-16 июня 2006 года, г. Чолпон-Ата, Иссык-Куль. – Бишкек, 2006. – С.139-140.
- 3 Реалиев А.С., Реалиев Ш.С., Сарбаев А.Т. Қазақстанда аудандастырылған және интродукциялық қатты бидай сорттарының тат түрлеріне төзімділігі. // Ізденістер, нәтижелер. Алматы: Агроуниверситет, 2008. №1. Б.75-80.
- 4 Койшибаев М. Сезонная и многолетняя динамика бурой ржавчины в Северном Казахстане. Итоги и перспектива селекции яровой пшеницы на устойчивость к абиотическим и биотическим факторам внешней среды. Шортанды. 2001. С. 75-84.
 - 5 Тырышкин Л.Г., Зуев Е.В., Курбанова П.М., Колесова М.А. // Защита растений и карантин. 2008. №6. С.39.
- 6 Тырышкин Л.Г., Колесова М.А., Курбанова П.М., Куркиев К.У., Саруханов И.Г. Генотипзависимая индукция устойчивости злаков к листовой ржавчине под действием бензимидазола // Вестник РАСХН. 2008. №6. С.61-63.
- 7 Тырышкин Л.Г., Курбанова П.М. Индукция экспрессии генов устойчивости взрослых растений к листовой ржавчине у проростков пшеницы /// Микология и фитопатология. -2009.-T.43.- Вып.1. С.75-80.
- 8 Михайлова Л.А., Гультаева Е.И., Мироненко Н.В. Методы исследований структуры популяций возбудителя бурой ржавчины пшеницы Puccinia recondita Rob. ex Desm. f. sp. tritici. СПБ.: РАСХН, ВНИИЗР, 2000.
- 9 Mains E. B., Jackson H. S. Physiologic specialization leaf rust of wheat p. triticina Erikss // Phytopathology. 1926. №16. P. 89 120.

References

- 1 Rsaliev Sh.S., Tileubayeva Zh.S., Rsaliev A.S., Agabayeva A.Ch. The selection of varieties of cereals among foreign breeding material (methodological approaches) // International scientific-practical conference dedicated to the 90th anniversary of J.T. Dzhiembaeva "Modern problems of plant protection and quarantine". Almaty: Aleiron, 2005. P.255-261.
- 2 Rsaliev Sh.S., Rsaliev A.S. Differentiation of stem rust pathotypes in Kazakhstan // Abstracts of posters, "The Second Central Asian Conference on crops", 13-16 June 2006, city Cholpan-Ata, Issyk kul. Bishkek, 2006. P.139-140.
- Rsaliev A.S., Rsaliev Sh.S., Sarbayev A.T. Resistance to rust in wheat cultivars adapted and introduced smut. Izdenister, natijeler. Almaty: Agrouniversitet. 2008. N1. P.75-80.
- 4 Koishybaev M. Seasonal and long-term dynamics of brown rust in northern Kazakhstan. The results and the prospect of spring wheat breeding for resistance to biotic and abiotic environmental factors. Shortandy. 2001. P. 75-84.
 - 5 Tyryshkin L.G., Zyev E.V., Kurbanova P.M., Kolesova M.A. // Quarantine and protection of plants. −2008. −№6. −P.39.
- 6 Tyryshkin L.G., Kolesova M.A., Kurbanova P.M., Kurkyev K.U., Sarukhanov I.G. Genotypedepending induction stability cereal leaf rust under the influence of the benzimidazole // Vestnik RASHN. −2008. −№6. −P.61-63.
- 7 Tyryshkin L.G., Kurbanova P.M., Mironenko N.V. Research of gene expression of adult plant leaf rust in wheat germ // Mikologiya I fitopotologiya. − 2009a. − T.43. − № 1. −P.75-80.
- 8 Mihailova L.A., Gultayeva E.I., Mironenko N.V. Methods of researches structure of populations causative agent of leaf rust of wheat Puccinia recondita Rob. ex Desm. f. sp. tritici. SPB.: RASHN, VNIIZR. 2000. P. 114-119.
- 9 Mains E. B., Jackson H. S. Physiologic specialization leaf rust of wheat p. triticina Erikss // Phytopathology. 1926. №16. P. 89 120.