Д.Г. Мара́лбаева, К.К. Ахметов, Р.М. Уалиева, М.К. Инсе́баева

Павлодарский государственный университет имени С. Торайгырова, Казахстан, г. Павлодар, e-mail: ualieva_rimma@mail.ru

ФАУНА И ПАРАЗИТОЛОГИЧЕСКИЙ АНАЛИЗ ЗАРАЖЕННОСТИ ДИКИХ ПТИЦ ПАВЛОДАРСКОЙ ОБЛАСТИ ТРЕМАТОДАМИ ДВУХ СЕМЕЙСТВ

Аннотация. Изучение путей трансмиссии паразитов различных животных в свете происходящих экосистемных трансформаций, обусловленных природными факторами (изменение климата) и влиянием человека, является актуальной проблемой. В связи с вышесказанным становится злободневным изучение особенностей существования паразитов и паразитарных систем в изменяющихся условиях среды. Настоящая статья посвящена анализу многолетних данных по двум таксонам представителей класса Trematoda типа Plathelminthes на территории Павлодарской области Казахстана.

Целью исследования является паразитологический анализ данных по трематодам семейств Prosthogonimidae и Echinostomatidae, установление особенностей очагов распространения гельминтов.

Впервые у вышеуказанных семейств проанализированы показатели экстенсивности инвазии птиц обследованных видов, показатели индекса обилия, определены особенности вышеназванных показателей от таксonomicского места птиц-хозяев на территории исследуемого региона.

Изучение фауны и распространенности представителей семейств Prosthogonimidae и Echinostomatidae класса Trematoda типа Plathelminthes у диких птиц позволяет судить о том, что в Павлодарской области существуют достаточно обширные очаги простогонимоза птиц, который в последние годы претерпевает изменения. Эхиностомоз диких птиц распространен у водоплавающих. Дикие птицы обеспечивают поддержание и очагов трематодозов.

Ключевые слова: гельмintsы, трематоды, дикие птицы, фауна, паразитологический анализ.

1 D.G. Maralbayeva, 2 K.K. Akhmetov, 3 R.M. Ualieva, 4 M.K. Insebaeva

S. Toraiygrov Pavlodar state university,
Kazakhstan, Pavlodar, e-mail: ualieva_rimma@mail.ru

Fauna and parasitological analysis of infection of wild birds of Pavlodar region with trematodes of two families

Abstract. The study of the ways of transmission of parasites of various animals in the light of the ongoing ecosystem transformations caused by natural factors (climate change) and human influence is an urgent problem. In connection with the above, it becomes topical to study the features of the existence of parasites and parasitic systems in changing environmental conditions. This article is devoted to the analysis of long-term data on two taxa of representatives of the class Trematoda of the type Plathelminthes on the territory of Pavlodar region of Kazakhstan.

The aim of the research is parasitological analysis of data on trematodes of families Prosthogonimidae and Echinostomatidae, identification of features of centers of distribution of helminths.

In the above families the indicators of the invasion intensity of birds of the examined species, the abundance index indicators were analyzed for the first time, the features of the above mentioned indicators from the taxonomic location of the host birds in the studied region were determined.

Studying of fauna and prevalence of representatives of families Prosthogonimidae and Echinostomatidae of class Trematoda of type Plathelminthes at wild birds allows to judge that in the Pavlodar region there are rather extensive foci of prostogonimosis of birds which in recent years undergoes changes. Echinostomes of wild birds is widespread among waterfowl hunting commercial species of the region. Wild birds provide maintenance of foci of trematodoses.

Key words: helminths, trematodes, wild birds, fauna, parasitological analysis.
Введение

Изучение фауны, биологии и экологии различных таксонов гельминтов является актуальным направлением исследований. В последнее время этому вектору зоологической науки, имеющей медио-ветеринарную значимость незаслуженно мало уделяется внимание со стороны ученых. Тем более, что многие регионы нашей республики в этом отношении нет затронуты подобными исследованиями. Разные аспекты гельминтологии в центральных, западных и северных регионах республики изучались спорадически и в основном в 60-80-х годах прошлого века.

Настоящее исследование посвящено изучению фауны и паразитологическому анализу двух семейств трекомод, имеющих практическое значение, поскольку, на территории Павлодарской области они достаточно широко распространены у различных хозяев (диких птиц). Представители этих семей гельминтов паразитируют и у домашних птиц, вызывая различные виды гельминтозов (трекоматозов).

Материалы и методы исследования

Фауна трекомод семейств Prosthogonimidae (Nicol, 1924) и Echinostomatidae нами были установлены при использовании метода полного гельминтологического вскрытия по К. И. Скребнину (1928). Всего за весь период исследований была изучена фауна трекоматов семейств эхемпляров водно-болотных птиц, относящихся к 14 видам 4 отрядам: Podicipediformes — большая поганка, или чомра Podiceps cristatus (n=5), малая поганка P. ruficollis (n=2); Ciconiformes — выпь Botaurus stellaris (n=1); Gruidiformes — гусыная Fulica atra (n=20); Anseriformes — кряква Anas platyrhynchos (n=26), чирок-свинуточок A. crecca (n=1), чирок-трескунок A. querquedula (n=16), серая утка A. strepera (n=16), шилохвост A. acuta (n=10), пироконок A. clypeata (n=8), красноголовая черепах A. ferina (n=22), хохлатая черепах A. fuligula (n=3), огар Tadorna ferruginea (n=1).

Птицы добывались охотниками в период с 2012 по 2018 гг. в озерах Северо-Востока Республики в пределах Павлодарской области, а именно в Баянульском, Жезказненском, Лебяжинском, Аксьском, Павлодарском районах. Добытые птицы осуществлялись ежегодно в период с августа по октябрь. Видовая принадлежность птиц определена доктором биологических наук К. К. Ахметовым. Для определения морф трекомод использовали определитель под редакцией К. М. Рыжикова [1].

Статистическая обработка полученных материалов осуществлялась в соответствии с рек
комендациями Г. Ф. Лакина [2]. По результатам вскрытых хозяев рассчитывались экстенсивность инвазии (ЭИ), индекс обилия (ИО), интенсивность инвазии (ИИ).

В ходе полевых исследований и диагностике видов собранного материала было определено присутствие в фауне троматод Павловской области двух видов семейства Prosthogonimidae — это Prosthogonimus cuneatus (Rudolph, 1809) и Schistosomes rarus (Braun, 1901).

По итогам диагностики таксономической принадлежности представителей семейства Echinostomatidae были обнаружены виды Hypoderaeum conoideum (Bloch, 1782), Echinostoma revolutum (Fröelich, 1802) и Echinoparyphium aconiatum (Dietz, 1909).

Гельминты вышеназванных семейств троматод, собранные в ходе паразитологического исследования патогены, так как вызывают достаточно распространенные троматодозы (простонимез, эхиностоматидозы) птиц. Многие виды диких и домашних птиц являются окончательными хозяевами троматод вышеназванных семейств [3-6].

Самыми патогенными и наиболее распространенными являются E. revolutum, H. conoideum и Echinoparyphium recurvatum (Linstow, 1873). Возбудители локализуются в кишечнике домашних уток и гусей, диких водоплавающих и болотных птиц, значительно реже у кур, индюков и голубей [7, 8]. Даже невысокие значения интенсивности заражения водоплавающих птиц, особенно молодняка, приводят к их истощению и гибели [3-5].

Результаты паразитологического анализа данных троматод семейства Prosthogonimidae (Nicoll,1924)

Для выявления показателей зараженности хозяев были проведены исчисления трех основных показателей численности паразитов, широко применяемых в настоящее время в паразитологии: экстенсивность инвазии, интенсивность инвазии и индекс обилия [9]. В таблице 1 приведены данные паразитологического анализа зараженности по видам хозяев.

Всего было исследовано 131 экземпляр птиц, из которых инвазированными троматодами семейства Prosthogonimidae (Luhe, 1909) оказались 88 экземпляров (67,2 %).

Показатели процента зараженности проказагномозом представителей различных семей птиц выстроены следующим образом: у 60 % журавлеобразных 60 % (лусуха), гусеобразных 74,5 % (крыква, серая утка, шилохвост, ширококоно-
ска, чирок-трескуна, чирок-свистунок, чернеть хохлатая, чернеть красноголовая, огарь). Экстенсивность инвазии птиц обследованных видов варьировала от 7,7 до 100 % (таблица 1). Индекс обилия марит семейства Prosthogonimidae у гусеобразных был значительно выше, чем у журавлеобразных (таблица 1). Максимальный индекс обилия выявлен у чира-свицунка (1), в то время как минимальный индекс обилия отмечен у креквы (0,08). Интенсивность инвазии журавлеобразных варьировалась от 1 до 1,17 экз., у гусеобразных — от 0,85 до 1,5. У аистообразных (выся) и поганкообразных (поганки) простонимиды не обнаружены.

В среднем на каждую зараженную птицу приходилось по 1,09 экз., но интенсивность инвазии гусеобразных была примерно 1,7 раза выше, чем журавлеобразных. Самая высокая интенсивность инвазии зарегистрирована у чира-трескуна и у шилохвости. Средняя интенсивность заражения гусеобразных и журавлеобразных была невысока (1-2 мариты).

Из обнаруженных 96 марит 60,4 % определены как S. rarus и 38,5 % — P. cuneatus. Заражение троматодами видов семейства Prosthogonimidae выявлено у чира-трескуна, лусухи, серой утки, красноголовой чернеть, креквы, шилохвост и ширококоносы. Сочетание одновременного заражения троматодами 2-х видов разных родов P. cuneatus и S. rarus зарегистрировано не было. Экстенсивность инвазии птиц каждого вида отдельными видами троматод представлена в таблице 1.

S. rarus обнаружен у 52 птенцов 11 видов птиц. Гусеобразные и журавлеобразные заражены маритами S. rarus сильнее, чем маритами P. cuneatus. Однако, по интенсивности инвазии превышение было незначительным, но по экстенсивности заражения и индексу обилия марит S. rarus они различались на порядок. Максимальная интенсивность заражения отмечена у красноголовой чернеть (таблица 1).

P. cuneatus зарегистрирован у 36 птенцам 10 видов. По экстенсивности заражения и индексу обилия марит P. cuneatus у журавлеобразных и гусеобразных различия не выявлены. В среднем на каждую зараженную птицу приходилось по 1,03 экз. Самая высокая интенсивность инвазии отмечена у чира-трескуна и у шилохвости (таблица 1).

Ниже представлены общие сведения о встречаемости простонимид в Павловской области. Места добычи хозяев (озера) троматод приведены на карте (рисунок 1).
Семейство Prostogonimidae (Nicoll, 1924)
Подсемейство Prostogoniminae (Luhе, 1909)
Род Prostogonimus (Luhе, 1899)
Prostogonimus cuneatus (Rudolphi, 1809)

Хозяин: лысуха (Fulica atra), кряква (Anas platyrhynchos), чирок-трескунок (Anas querquedula), серая утка (Anas strepera), шилохвость (Anas acuta), широконоска (Anas clypeata), красноголовая чернеть (Aythya ferina), огарь (Tadorna ferruginea).

Локализация: Фабрициев сумка.

Место обитания: озеро Зоверное, озеро Лужа, озеро Копа (Байнаульский район, село Кундыколь); озеро Какай, озеро Акюл, озеро Пшенды, озеро Кожа, озеро Курлен (Лебяженский район); озеро Жетеки, озеро Жуантобе (город Павлодар); озеро Жаламан, озеро Кауголь (Железинский район).

Род Schistogonimus (Luhе, 1909)
Schistogonimus rarus (Braun, 1901)

Хозяин: лысуха (Fulica atra), кряква (Anas platyrhynchos), чирок-трескунок (Anas querquedula), чирок-свиристунок (Anas crecca), серая утка (Anas strepera), шилохвость (Anas acuta), широконоска (Anas clypeata), красноголовая чернеть (Aythya ferina), хохлатая чернеть (Aythya fuligula).

Локализация: Фабрициев сумка.

Место обитания: озеро Завадское, озеро Лужа, озеро Копа (Байнаульский район, село Кундыколь); озеро Какай, озеро Акюл, озеро Пшенды, озеро Кожа, озеро Курлен (Лебяженский район); озеро Жетеки, озеро Жуантобе (город Павлодар); озеро Жаламан, озеро Кауголь (Железинский район, село Пограничник (Акесукский район).

Как было отмечено ранее, домашние и дике птицы являются окончательными хозяевами, промежуточными хозяевами являются пресноводные млекопитающие, а дополнительными хозяевами в цикле развития служат трекозсы. В печенни моллюска паразит размножается partenogenетическим путем, последовательно проходя стадии пикниди, спороцисты и церкарии, которые через 45 дней покидают моллюска. В дальнейшем церкарии в воде пассивно (через рот или анус) попадают в пищеварительный тракт личинок трекозсы, мигрируют в их мышцы и превращаются в метацеркариев [10, 11].

Утки заражаются простогонимозом, заглатываемые личинки трекозсы в водоемах. Метацеркарии проникают у взрослых птиц в желудок, а у молодых — в фабрициеву сумму и через 1-2 недели превращаются во взрослых гельминтов [11, 12]. Заболевание имеет очаговое распространение. Заражаются им птицы разного возраста при проглатывании личинок и окрыленных трекоз [13, 14].

В прибрежных, заросших растениями участках озера, болот, затонах рек и прудов личинки трекоз обитают в большом количестве. По всей видимости, дике птицы являются основным источником инвазирования водоемов. Метацеркарии перезимовывают в личинках трекоз, длительное время сохраняя жизнеспособность при неблагоприятных условиях внешней среды. Таким образом, погода способствует распространению простогонимоза [10]. По литературным данным метацеркарии сохраняются в организме трекоз и после превращения личинок во взрослых особей (имаго). В конце мая — начале июня личинки трекоз выходят из воды, собираясь у берегов водоемов, затем забираются на стволы растений, прикрепляются к траве, кочкам, где и превращаются во взрослых трекоз. Птицы же, в свою очередь, склевывают трекоз и их личинок, и дальнейший цикл развития происходит в организме птицы [12].

По нашим предположениям, очаг простогонимоза носит местный характер, так как маршруты трекозы найдены у молодых птиц-сезотлеток, еще имеющих Фабрициеву сумму, у взрослых птиц, как известно, она исчезает.

Из 2 видов трекозы сем. Prostogonimidae, выявленных на озерах Северо-Востока Республики, чаще диагностируется у хозяев Schistogonimus rarus. Наиболее высокие показатели зараженности отмечены нами у чирка-трекушника, перекапа, есть также у лысух и крякв, красноголовой чернеть, шилохвость и широконосок.

Согласно литературным данным, поганки и выши питаются водными беспозвоночными, молодью земноводных и рыб. Поэтому метацеркарии простогонимид попадают к ним исключительно с водными личинками (трекоз, ручейников), а не с имаго, то, вероятно, большинство или все перечисленные личинки еще не инвазированы. Можно предположить, что в связи с этим поганки и выши испытывают огонь окончательных хозяев простогонимид редок [15, 16].

Согласно литературным данным по этой проблеме простогонимиды встречаются более чем у 70 видов птиц Палеарктики, от Англии, Голландии, Украины, Молдавии, Казахстана, России до Китая [4, 17-19]. Есть сведения об обнаружении простогонимид не только у журавлеобразных и гусеобразных, но и у ржанкообразных, дневных хищных, куриных и воробьиных [20-24].
Таблица 1 – Индекс зараженности журавлеобразных и гусеобразных птиц маритами сем. Prosthogonimidae, Северо-Восток Казахстана

<table>
<thead>
<tr>
<th>Вид паразита</th>
<th>ЭИ, %</th>
<th>ИИ, экз.</th>
<th>ИО, экз.</th>
<th>ЭИ, экз.</th>
<th>ИИ, экз.</th>
<th>ИО, экз.</th>
<th>ЭИ, %</th>
<th>ИИ, %</th>
<th>ИО, %</th>
<th>Ширина</th>
<th>Ширина</th>
<th>ширина</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schistogonimus rarus</td>
<td>50</td>
<td>1</td>
<td>0,25</td>
<td>100</td>
<td>1</td>
<td>1</td>
<td>30</td>
<td>1,17</td>
<td>0,35</td>
<td>31,3</td>
<td>1</td>
<td>0,31</td>
<td>31,8</td>
<td>1,29</td>
<td>0,41</td>
<td>33</td>
<td>1</td>
<td>0,33</td>
<td>65,4</td>
<td>1,24</td>
<td>0,81</td>
<td>30</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>Prosthogonimus cuneatus</td>
<td>25</td>
<td>1,5</td>
<td>0,38</td>
<td>-</td>
</tr>
<tr>
<td>Всего видов трематод</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Вскрыто птиц, экз.</td>
<td>16</td>
<td>1</td>
<td>20</td>
<td>16</td>
<td>22</td>
<td>3</td>
<td>26</td>
<td>10</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Вид паразита</th>
<th>Чирок трескуточ</th>
<th>Чирок светлоскуточ</th>
<th>Лосячая</th>
<th>Серая уха</th>
<th>Чернота крещеполовая</th>
<th>Чернота холостая</th>
<th>Кричевая</th>
<th>Шириночка</th>
<th>Ширинокоса</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schistogonimus rarus</td>
<td>ЭИ, %</td>
<td>ИИ, %</td>
<td>ИО, %</td>
<td>ЭИ, %</td>
<td>ИИ, %</td>
<td>ИО, %</td>
<td>ЭИ, %</td>
<td>ИИ, %</td>
<td>ИО, %</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1</td>
<td>0,25</td>
<td>100</td>
<td>1</td>
<td>1</td>
<td>30</td>
<td>1,17</td>
<td>0,35</td>
</tr>
<tr>
<td>Prosthogonimus cuneatus</td>
<td>ЭИ, %</td>
<td>ИИ, %</td>
<td>ИО, %</td>
<td>ЭИ, %</td>
<td>ИИ, %</td>
<td>ИО, %</td>
<td>ЭИ, %</td>
<td>ИИ, %</td>
<td>ИО, %</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1,5</td>
<td>0,38</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>30</td>
<td>1</td>
<td>0,3</td>
</tr>
</tbody>
</table>

Всего видов трематод: 2 |
Всего яиц птиц, экз.: 16 |
Все яйца птиц, экз.: 16 |
Примечание. ЭИ — экстенсивность инвазии, %; ИИ — интенсивность инвазии, %; ИО — индекс обилия, экз.; «—» — паразит не обнаружен.
Данные по простоногимидам птиц Северо-Востока Казахстана имеются лишь в работах К.К. Ахметова с соавторами [25-26].

У большинства исследованных экземпляров птиц были обнаружены *Schistogonimus rarus* и *Prothogonimus cuneatus*. В гельмитологических сборах за 2017-2018 гг. гельминты семейства Prothogonimididae не отмечались, хотя в последние годы достаточно влажно и, традиционно, тепло лето. Стоит отметить, что все обнаруженные трематоды были найдены в фабрициевых сумках птиц, что говорит о том, что все добытые хозяева были сеголетками. По нашему мнению сеголетки птиц заражаются посредством в прееном молодые трематоды *Schistogonimus rarus* и *Prothogonimus cuneatus*, установленные нами в различных районах исследуемой территории, на значительные расстояния, в том числе и на крупные птицы диких птиц, Плейнс отобранных озер Северо-Восточной части Республики.

Домашние и дикие птицы подвергнуты различным видам простоногимид, потому как этот тип трематодов распространяется через различных видов степей, которые являются второй промежуточным хозяином. Степь в силу подвижности могут переносить личиночных стадий трематод *Schistogonimus rarus* и *Prothogonimus cuneatus*, установленные нами в различных районах исследуемой территории, на значительные расстояния, в том числе и на крупные птицы диких птиц, Плейнс отобранных озер Северо-Восточной части Республики.

Результаты паразитологического анализа данных трематод семейства Echinostomatidae (Dietz, 1909)

Для выявления показателей зараженности хозяев были проведен паразитологический анализ трех носителей показателей паразитов, что и по семейству Echinostomatidae: интенсивность инвазии и индекс обилия (таблица 2) [9].

Из 131 исследованных птиц инвазированными трематодами семейства Echinostomatidae (Dietz, 1909) оказались 68 экземпляров птиц (51,9%). Обнаружены они у 66 % гусеобразных птиц 7 видов: чирок-трескуна, серая утка, чирек красноголовая, чирек хохлатая, кряква, шилохвость, широкопоск. Экстенсивность инвазии птиц обследованных видов варьировалась от 6 до 73 % (таблица 2). Максимальный индекс обилия выявлен у шилохвости (1,3), в то время как минимальный индекс обилия отмечен у чирка трескуна (0,06). Интенсивность инвазии гусеобразных варьировалась от 1,74 до 2,33 экз. У журавлевобразных, ансерообразных и поганкообразных эхиностоматид не обнаружено, по этому в таблицу они не включены.

В среднем на каждую зараженную птицу приходилось по 1,9 экз. Эхиностоматид. Самая высокая интенсивность инвазии зарегистрирована у широкопосков (2,33}, а также у кряквы (2) и серой утки (2). Средняя интенсивность заражения гусеобразных была невысока (1-3 маркеты).

**Фауна эхиностоматид, определенная нами в Павлодарской области, представлены 3 видами: Hypoderaeum conoidem (Bloch, 1782), Echinostoma revolutum (Friedelich, 1802) и Echinoparyphium aconiatum (Dietz, 1909). Из обнаруженных 129 марят 67 % определены как H. conoidem, 21 % – E. revolutum и 12 % – E. aconiatum. Сочетание одновременного заражения трематодами 2 видов разных родов было зарегистрировано у кряквы, шилохвости, серой утки и чернеть красноголовой. Экстенсивность инвазии птиц каждого вида отдельными видами трематод представлена в таблице 1.

H. conoidem обнаружен у 51 сеголеток 7 видов птиц. Показатели зараженности гусеобразных мариями H. conoidem больше, чем остальными видами эхиностоматид.

Po экстенсивности заражения и индексу обилия мария H. conoidem показатели различались на порядок, однако, по интенсивности инвазии превышение было незначительным. Максимальная экстенсивность инвазии достигает 73 % у кряквы, а индекс обилия 1,3 экз. у шилохвости. В среднем на каждую зараженную птицу приходилось по 1,7 экз. Максимальная интенсивность заражения H. conoidem отмечена у широкопоск (таблица 2).

E. revolutum зарегистрирован у 17 сеголеток 5 видов. Экстенсивность заражения мария E. revolutum у гусеобразных варьирует от 12,5 до 50 %. По индексу обилия различия незначительные (от 0,23 до 0,9 экз.). В среднем на каждую зараженную птицу приходилось по 1,6 экз. Сами высокая интенсивность инвазии отмечена у широкопосков и шилохвости (таблица 2).

E. aconiatum обнаружен у 10 сеголеток 7 видов птиц. В среднем на каждую зараженную птицу приходилось по 1,5 экз. Максимальная интенсивность инвазии (2) отмечена у широкопосков, кряквы и серой утки. Показатели индекса обилия были примерно в два раза ниже по сравнению с остальными двумя видами обнаруженных трематод. Экстенсивность инвазии тоже отличается значительно (таблица 2).
Таблица 2 – Индекс зараженности журавлеобразных и гусеобразных птиц маритами сем. Echinostomatidae, Северо-Восток Казахстана

<table>
<thead>
<tr>
<th>Вид паразита</th>
<th>ЭИ, %</th>
<th>ИИ, экз.</th>
<th>ИО, экз.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypoderaeum conoideum</td>
<td>6</td>
<td>1</td>
<td>0,06</td>
<td>69</td>
<td>1,73</td>
<td>1,19</td>
<td>36</td>
<td>1,5</td>
<td>0,55</td>
<td>67</td>
<td>1</td>
<td>0,67</td>
<td>73</td>
<td>1,74</td>
<td>1,27</td>
<td>70</td>
<td>1,86</td>
<td>1,3</td>
<td>38</td>
<td>2,33</td>
<td>0,88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echinostoma revolutum</td>
<td>-</td>
<td>-</td>
<td></td>
<td>25</td>
<td>1,25</td>
<td>0,31</td>
<td>14</td>
<td>1,67</td>
<td>0,23</td>
<td>-</td>
<td>-</td>
<td></td>
<td>15</td>
<td>1,5</td>
<td>0,23</td>
<td>50</td>
<td>1,8</td>
<td>0,9</td>
<td>12,5</td>
<td>2</td>
<td>0,25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echinoparyphium aconiatum</td>
<td>6</td>
<td>1</td>
<td>0,06</td>
<td>6</td>
<td>2</td>
<td>0,125</td>
<td>14</td>
<td>1,33</td>
<td>0,18</td>
<td>33</td>
<td>1</td>
<td>0,33</td>
<td>9</td>
<td>2</td>
<td>0,15</td>
<td>10</td>
<td>1</td>
<td>0,1</td>
<td>12,5</td>
<td>2</td>
<td>0,25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Всего видов трематод</td>
<td>2</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Вскрыто птиц, экз.</td>
<td>16</td>
<td>16</td>
<td></td>
<td>22</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>26</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Примечание. ЭИ – экстенсивность инвазии, %; ИИ – интенсивность инвазии, экз.; ИО – индекс обилия, экз.; → паразит не обнаружен.
Ниже представлены общие сведения о встречаемости эхиностоматид на территории Павловской области и список озер, где были добыты хозяева трематод.

Семейство Echinostomatidae (Dietz, 1909)
Подсемейство Echinostomatinae (Looss, 1899)

Род Hypoderaeum (Dietz, 1909)

Hypoderaeum conoideum (Bloch, 1782)

Хозяин: креква (*Anas platyrhynchos*), хохлатая чернь (*Aythya fuligula*), серая утка (*Anas strepera*), широконоска (*Anas clypeata*), шилохвость (*Anas acuta*), красноголовая чернь (*Aythya ferina*), чирок-трескунок (*Anas querquedula*).

Локализация: кишечник.

Место обнаружения: озеро Зворевое, озеро Лужа, озеро Копа (Байнаульский район, село Кундыколь); озеро Куржол, озеро Пшенды, озеро Кожа, озеро Керулен (Лебяженский район); озеро Жетекшин, озеро Кургаль (город Павлодар); озеро Жалманды, озеро Кауголь (Железинский район); село Пограничник (Аксуский район).

Другие виды указаны в тексте, но не являются доминирующими.

Род Echinostoma (Rudolphi, 1809)

Echinostoma revolutum (Frölich, 1802)

Хозяин: шилохвость (*Anas acuta*), креква (*Anas platyrhynchos*), красноголовая чернь (*Aythya ferina*), серая утка (*Anas strepera*), широконоска (*Anas clypeata*).

Локализация: клоака, кишечник.

Место обнаружения: озеро Зворевое, озеро Лужа, озеро Копа (Байнаульский район, село Кундыколь); озеро Куржол, озеро Пшенды, озеро Кожа, озеро Керулен (Лебяженский район); озеро Жетекшин, озеро Кургаль (город Павлодар); село Кургали (Байнаульский район); озеро Жалманды, озеро Кауголь (Железинский район).

Род Echinoparyphium (Dietz, 1909)

Echinoparyphium acorniatum (Dietz, 1909)

Хозяин: хохлатая чернь (*Aythya fuligula*), красноголовая чернь (*Aythya ferina*), шилохвость (*Anas acuta*), креква (*Anas platyrhynchos*), чирок-трескунок (*Anas querquedula*), серая утка (*Anas strepera*).

Локализация: кишечник.

Место обнаружения: озеро Зворевое, озеро Лужа, озеро Копа (Байнаульский район, село Кундыколь); озеро Куржол, озеро Керулен, озеро Кожа (Лебяженский район); село Кургали (Байнаульский район); озеро Жалманды, озеро Кауголь (Железинский район).

Как уже было отмечено, цикл развития эхиностоматид характеризуется наличием одного и более хозяев. Дефинитивными хозяевами являются домашние и дикие птицы, промежуточными являются пресноводные моллюски из родов *Radix, Lymnaea*, *Physa, Planorbis*, *Anisus*, и дополнительными хозяевами в цикле развития служат эти же моллюски, лигушки, некоторые виды рыб и насекомые [7, 27]. Так как жизненный цикл диагностированных нами трематод связан с широким кругом промежуточных хозяев, то данные по видовому разнообразию и интенсивности заражения эхиностоматидами являются экологическими показателями участия различных водных организмов в пищевом рационе околоводных птиц [3].

Зараженные мариами эхиностоматид птицы выделяют яйца трематод с фекалиями, из которых выходит мириацид. Известно, что мириациды в яйце созревают за 8-15 суток. Следующая стадия — церкарии покидают тело промежуточного хозяина через 40 дней после его заражения. Церкарии в течение 10-12 часов заражают дополнительных хозяев. Метацеркарии развивающиеся в дополнительном хозяине сохраняют жизнеспособность в тело дополнительного хозяина в течение его жизни и даже в течение некоторого времени после гибели его. Метацеркарии трематод родов Echinostoma и Hypoderaeum в организме птиц достигают половой зрелости, согласно исследований на 12-16-й день [28].

Водоплавающие птицы заражаются в теплые времена года на водоемах, заглатывая дополнительных хозяев с инвазионными личинками возбудителей. Личинки эхиностоматид, перезимовавшие в теле промежуточных и дополнительных хозяев, сохраняют жизнеспособность и весной. В этом случае можно говорить о достаточно раннем заражении оконечных хозяев мариами гельминтов. Тем не менее, такой факт имеет место быть. В апреле и мае зараженность моллюсков незначительна, летом инвазированность их повышается как в количественном, так и в видовом отношении [28, 29].

Самиыми неблагополучными относительно инвазии являются стоячие неглубокие водоемы и заболоченные участки. Максимальное заражение уток и гусей наблюдается в летне-осенний период года. Зимой происходит имеет место процесс девастации (самоотощение) полновозрастных птиц (марит), поэтому в это время их в кишечнике птиц не выявляют [7].
Совершая сезонные миграции, водоплавающие птицы за короткий срок преодолевают большие расстояния, в некоторых случаях перемещаясь с одного континента на другой, пересекая при этом различные ландшафтно-географические и климатические зоны. Благодаря этим особенностям водоплавающие птицы играют важную роль не только в реализации жизненных циклов паразитов, но и в их расселении, что является актуальной проблемой современной паразитологии [30, 31].

Весной и особенно осенью на исследуемой территории останавливаются большие стаи пролетных птиц, но по нашему мнению, очаг эхиностоматидоза может носить местный характер, поскольку мариты найдены у молодых птиц-сеголеток. При этом отмечаем, что очаг эхиностоматидоза на территории Павлодарской области Казахстана достаточно широкий, поскольку мариты трематод семейства Echinostomatidae определены от птиц добытых на географически отдаленных друг от друга водоемах. Расстояние между озерами, где у хозяев определены эхиностоматиды составляет 200-400 и более километров. Заражение птиц трематодами семейства Echinostomatidae не связано с нахождением водоемов в определенной ландшафтной зоне региона исследований. Эхиностоматиды отмечены нами у птиц добытых во всех ландшафтных зонах Павлодарской области (лесостепь, степь, сухая степь, Казахский мелкососновник).

Из 3 видов трепатогем сем. Echinostomatidae, определенных на озерах Северо-Восточной части Республики, наиболее часто встречается Hypoderaeum conoides. Более высокие показатели зараженности отмечены нами у серой утки, красноголовой чернети, кохлатой чернети, кряквы, циолков и широкопос.

Основной причиной, обусловливающей высокую зараженность диких водоплавающих
птиц экзокриптодозом (ЭИ 40,9%), является обилье промежуточных хозяев — пресноводных моллюсков, заселяющих водоемы. Личинки этих гельминтов, перезимовывая в организме промежуточных хозяев, обеспечивают ежегодное заражение птиц, обитающих в водоемах. Безусловно, обнаруженные гельминты представляют определенную угрозу заражения как дикой, так и домашней водоплавающей птицы, обитающей на озерах и реках [32].

Таким образом, изучение фауны и распространённости представителей семейств Prothogonimididae и Echinostomatidae класса Trematoda типа Plathelmintes у диких птиц позволяет судить о том, что в Павлодарской области существует достаточно обширный или разрозненные очаги простогонимоза птиц. Экзокриптодозы диких птиц, распространён у водоплавающих охотничьих промысловых видов региона. Диккие птицы участвуют в поддержании и очагах трематодозов.

Заключение

У большинства исследованных экземпляров птиц было обнаружено два вида паразитов: Schistogonimus rarus и Prothogonimus cuneatus. За 2017-2018 гг. гельминты семейства Prothogonimididae не встречались, хотя в последние годы достаточно влажно и, традиционно, теплое лето. Стоит отметить, что все обнаруженные трематоды были найдены в фабрициевых сумках птиц, что говорит о том, что все добытые птицы были септемицами. По нашему мнению, момент заражения птиц заложен в раннем ювенильном возрасте различных видов стрекоз, в изобилии встречающихся в биоценозах пресноводных озер Северо-Востока Казахстана.

Домашние и дикие птицы подвергнуты различным видам простогонимоза, поскольку, этот тип трематодозов распространяется через второго промежуточного хозяина, который является различными видами стрекоз. Стрекозы в силу моллюски могут переносить личиночных стадий трематод Schistogonimus rarus и Prothogonimus cuneatus, установленные нами в различных районах исследуемой территории, на значительные расстояния, в том числе и на крупные птичьи хозяйства и личные подворья жителей региона. Столь широкое географическое распространение трематод на территории Северо-Востока Казахстана может говорить об возможном присутствии очагов развития трематод семейства Prothogonimididae.

Присутствие промежуточных и дополнительных хозяев трематод семейств Echinostomatidae на территории региона способствует повсеместному присутствию в фауне трематод этого таксона. Диккие птицы, ввиду лабильности, «обезопасивают» достаточно высокий процент зараженности птиц хозяев.

Конфликт интересов

Все авторы прочитали и ознакомлены с содержанием статьи и не имеют конфликта интересов.

Благодарности

Работа поддержана грантом № АР05132818 МОН РК.

Литература

References

