Пинский И.¹, Лабейт З.³, Лабейт Д.⁴, Иващенко А.²

¹студент PhD-докторантуры, стажёр-исследователь, e-mail: ilya.pinskyi@mail.ru ²доктор биологических наук, профессор, главный научный сотрудник, e-mail: a_ivashchenko@mail.ru Научно-исследовательский институт проблем биологии и биотехнологии Казахского национального университета имени аль-Фараби, Казахстан, г. Алматы ³PhD, профессор, e-mail: Labeit@medma.de ⁴PhD, и.о. профессора, e-mail: ditmar.labeit@medma.uni-heidelberg.de Медицинский факультет Маннгейма университета Гейдельберга, Германия, г. Маннгейм

ХАРАКТЕРИСТИКИ ВЗАИМОДЕЙСТВИЯ MIRNA С MRNA КАНДИДАТНЫХ ГЕНОВ СЕРДЕЧНО-СОСУДИСТЫХ ЗАБОЛЕВАНИЙ ЧЕЛОВЕКА

Было изучено связывание 6271 miRNA человека с mRNA 74 кандидатных генов, которые, предположительно, могут быть биомаркерами и играть ключевую роль в развитии инфаркта миокарда, ишемической болезни сердца, артериальной гипертензии, атеросклероза и метаболического синдрома. Среди полученных результатов мы отобрали 438 сайтов связывания miRNA в mRNA этих генов с учётом энергии связывания, величины $\Delta G/\Delta G_m$ и длины miRNA. Больше всего сайтов связывания выявлено у кандидатных генов ишемической болезни сердца (155). Только четыре гена в своих mRNA имели сайты связывания miRNA с величиной $\Delta G/\Delta G_m$, равной 100%: ген сердечного тропомиозина TPM1, гены транскрипционных факторов GATA5 и NKX2-5, ген фактора свёртываемости крови F2 (протромбина). Наибольшее число сайтов связывания miRNA среди рассмотренных генов содержалось в mRNA генов GATA4, NKX2-5, TTN, LDLR и PPARGC1A. На основе полученных результатов можно сделать вывод, что экспрессия генов, связанных с развитием ишемической болезни сердца, в большей степени регулируется с помощью miRNA, чем экспрессия других генов рассмотренных в статье сердечно-сосудистых заболеваний человека.

Ключевые слова: miRNA; mRNA; инфаркт миокарда; ишемическая болезнь сердца; артериальная гипертензия; атеросклероз; метаболический синдром

Pinskij I.¹, Labejt Z.³, Labejt D.⁴, Ivashhenko A.²

¹PhD-student, trainee researcher, e-mail: ilya.pinskyi@mail.ru

²Doctor of Biological Sciences, Professor, Chief Researcher, e-mail: a_ivashchenko@mail.ru

Scientific Research Institute of Biology and Biotechnology Problems,

Al-Farabi Kazakh National University, Kazakhstan, Almaty

³PhD, Professor, e-mail: Labeit@medma.de

⁴PhD, Acting Professor, e-mail: ditmar.labeit@medma.uni-heidelberg.de

Medical Faculty Mannheim of the University of Heidelberg, Germany, Mannheim

Characteristics of miRNA interaction with mRNAs of candidate genes of human cardiovascular diseases

The binding of 6271 human miRNAs with mRNAs of 74 candidate genes was studied. These genes, presumably, can be biomarkers and play a key role in the development of myocardial infarction, ischemic heart disease, arterial hypertension, atherosclerosis and metabolic syndrome and perform various functions. Among the results obtained we have selected 438 miRNA binding sites in mRNAs of these genes, taking into account binding energy, $\Delta G/\Delta G_m$ ratio and the length of miRNAs. The largest number of binding sites (155) is found in mRNAs of ischemic heart disease gene candidates. Only four genes had miRNA binding sites in their mRNAs with $\Delta G/\Delta G_m$ value equal to 100%: TPM1, GATA5, NKX2-5 and

F2. GATA4, NKX2-5, TTN, LDLR and PPARGC1A genes contained the largest number of miRNA binding sites in their mRNAs among studied genes. Based on the results obtained, we can make conclusion that the expression of gene candidates of ischemic heart disease is more strongly regulated by miRNAs than the expression of gene candidates of other cardiovascular diseases described in the article. Associations of miRNAs and mRNAs of candidate genes of myocardial infarction, ischemic heart disease, arterial hypertension, atherosclerosis and metabolic syndrome development were found. The following associations of miRNAs and mRNAs of candidate genes, characterizing by free energy of interaction equal and more than -130kJ/mole, can be recommended for diagnostics of myocardial infarction, ischemic heart disease, arterial hypertension, atherosclerosis and metabolic syndrome: ACE1 and miR-3-8100-5p; ACTA2 and miR-19-44540-3p; AST1 and miR-17-40081-5p; GATA2 and miR-7-21068-3p; GATA4 and miR-1-155-3p, miR-3-8100-5p, miR-2-3313-3p, miR-16-13062-5p; GATA6 and miR-6-17815-3p; HIF1A and miR-6789-5p, miR-6-16980-5p; INSR and miR-4-11316-5p; MAPK1 and miR-17-39570-5p, miR-12-33610-3p, miR-9-20317-3p, miR-19-41910-5p; MYL4 and miR-4763-3p; NKX2-5 and miR-19-21199-3p, miR-20-22562-3p, miR-2-3313-3p, miR-1-2121-3p; PPARGC1A and miR-9-20317-3p, miR-5-15733-3p; TNNI3 and miR-2-7379-5p; TPM1 and miR-15-35627-5p; VEGFB and miR-20-22562-3p, miR-19-33623-3p, miR-19-30988-5p, miR-19-21199-3p, miR-1-2121-3p; VEGFC and miR-15-32047-5p, miR-17-40081-5p, miR-2-3313-3p, miR-20-45152-5p; VLDLR and miR-9-20317-3p. It is possible to control in the blood concentrations of these associations of miRNAs and mRNAs of candidate genes, suggested for early diagnostics of cardiovascular diseases.

Key words: miRNA; mRNA; gene candidates; myocardial infarction; ischemic heart disease; arterial hypertension; atherosclerosis; metabolic syndrome

Пинский И.¹, Лабейт З.³, Лабейт Д.⁴, Иващенко А.²

¹PhD-докторантураның студенті, зерттеуші-тәжірибе жинақтаушысы, e-mail: ilya.pinskyi@mail.ru ²Биологиялық ғылымдарының докторы, профессор, бас ғылыми қызметкер, e-mail: a_ivashchenko@mail.ru Әл-Фараби атындағы Қазақ ұлттық университетінің Биология және биотехнология институты, Қазақстан, Алматы қ. ³PhD, профессор, e-mail:Labeit@medma.de ⁴PhD, профессор міндетін атқарушы, e-mail: ditmar.labeit@medma.uni-heidelberg.de Гейдельберг университетінің Маннгеймдегі медициналық факультеті, Германия, Маннгейм

miRNA мен адамның жүрек және қан тамырлары ауруларының кандидаттық гендерінің mRNA-ларымен өзара әрекеттесуінің сипаттамалары

6271 адамның miRNA-лары және 74 кандидат гендерінің mRNA-лары байланысуы зерттеген. Бұл гендер, бәлкім, миокардтің инфарктісі, жүректің ишемиялық ауруы, гипертония, атеросклероз және метаболизмдік синдромның дамуында шешуші рөлді атқарады және әр түрлі функцияларды орындай алады. Олар жүрек және қан тамырлары ауруларының диагностикалык биомаркерлер болуы мүмкін. Алған нәтижелер арасында, байланысудың энергиясын, $\Delta G/\Delta G_m$ көлемін және mirna ұзындығын ескере отырып, біз осы гендердің mRNA-ларында 438 miRNA байланысуының сайттарын таңдадық. Жүректің ишемиялық аурусының кандидаттық гендерінің mRNA-ларында miRNA байланысуының сайттарының ең үлкен саны (155) табылған. Тек қана төрт гендерінің mRNA-ларында 100% $\Delta G/\Delta G_m$ көлемімен miRNA байланысуының сайттары бар. Бұл жүрек тропомиозиннің TPM1 гені, жүрек GATA5 және NKX2-5 транскрипциялық факторларларының гендері және қан ұюының F2 факторы (протромбин). Зерттеген гендер арасында GATA4, NKX2-5, TTN, LDLR және PPARGC1A гендерінің mRNA-ларында miRNA байланысуының сайттарының ең үлкен саны бар. miRNA-лар ишемиялық ауруының дамуына байланысты гендердің экспрессиясын басқа мақалада талқыланған жүрек-қан тамырлары ауруларының гендеріне қарағанда күштірек реттейді. Біздің нәтижелеріміздің негізінде деген қорытынды жасауға болады.

Түйін сөздер: miRNA; mRNA; кандидат гендер; миокардтің инфарктісі; жүректің ишемиялық ауруы; гипертония; атеросклероз; метаболизмдік синдром

Введение

Сердечно-сосудистые заболевания являются одной из наиболее распространённых причин смертности в Казахстане и всем мире (The World Health Organization, 2015: 285). Основными сердечно-сосудистыми заболеваниями являются инфаркт миокарда, ишемическая бо-

лезнь сердца, артериальная гипертензия, атеросклероз и метаболический синдром (The World Health Organization, 2014: 1). Все они тесно связаны между собой. Например, нарушения метаболизма липидов (метаболический синдром) приводит к повышению содержания холестерина и атерогенных липопротеинов в крови и к возникновению атеросклероза (O'Gara, 2012:

362). Атеросклероз приводит к сужению просвета кровеносных сосудов и повышению артериального давления, что становится причиной артериальной гипертензии и ишемической болезни сердца (Su, 2017: 1012). В свою очередь, ишемическая болезнь сердца является нарушением функционирования сердечной мышцы в результате сужения просвета коронарных артерий и последующего уменьшения поступления кислорода и питательных веществ (Zeman, 2017: 2791). В тяжёлой форме она может привести в конечном итоге к инфаркту миокарда. Поэтому актуальность таких исследований не вызывает никаких сомнений.

Сердечно-сосудистые заболевания являются полигенными заболеваниями, так как их возникновение и развитие зависит от изменения экспрессии множества так называемых «кандидатных генов». Кандидатный ген – это ген, связанный с развитием заболевания (Zaiou, 2017: 324). Кандидатные гены сердечно-сосудистых заболеваний условно можно разделить по выполняемым функциям на шесть групп: гены саркомерных белков миокарда; гены маркерных ферментов сердечно-сосудистых заболеваний; гены, активируемые гипоксией миокарда; гены транскрипционных факторов; гены, влияющие на артериальное давление и гены, связанные с метаболизмом липидов. Их экспрессия, как и многих других генов человека, находится под контролем miRNA, которые связываются с их mRNA и подавляют синтез кодируемых этими генами белков (Garcia-Romero, 2017: 301).

К сожалению, в настоящее время в мире ещё не существует полной базы генов и miRNA, связанных с сердечно-сосудистыми заболеваниями человека. Поэтому целью исследования было установление ассоциаций miRNA с кандидатными генами, которые могут быть биомаркерами для диагностики этих заболеваний и играть ключевую роль в их возникновении и развитии.

Материалы и методы исследования

Нуклеотидные последовательности mRNA кандидатных генов были взяты из базы данных Genbank (https://www.ncbi.nlm.nih.gov/genbank/). Нуклеотидные последовательности 2564 miRNA были получены из базы miRBase (www.mirbase. org/). Другие 3707 miRNA, использованные для исследования и пока отсутствующие в базе miR-Base, были открыты группой учёных в 2015 году (Londina, 2015: 1106). Программа MiRTarget использовалась для поиска сайтов связывания,

определения области расположения сайта miRNA в 5'-нетранслируемом участке (5'UTR), белоккодирующей части (CDS) и 3'-нетранслируемом участке (3'UTR) mRNA, свободной энергии связывания (ΔG) и схем взаимодействия miRNA с mRNA (Ivashchenko, 2014: 423). Величину ΔG/ ΔG_т использовали в качестве сравнительного количественного критерия силы взаимодействия miRNA с mRNA, где $\Delta G_{_m}$ равна энергии связи miRNA с полностью комплементарной ей нуклеотидной последовательностью. Мы выбирали сайты связывания miRNA с учётом энергии связывания, величины $\Delta G/\Delta G_{_{m}}$ и длины miRNA: для miRNA с длиной 17 нт. брали сайты со значением $\Delta G/\Delta G_m$ от 98% и выше, 18 нт. – от 96%, 19 нт. – от 94%, 20 нт. – от 92%, 21 нт. – от 91%, 22 HT. - OT 90%, 23 HT. - OT 89%, 24 HT. - OT 88%, 25 нт. – от 87% и 26 нуклеотидов – от 86% и более.

Результаты исследования

Ранее нами были установлены более 700 генов, связанных с развитием сердечно-сосудистых заболеваний (Ivashchenko, 2017: 39). Из них были отобраны 74 кандидатных гена. Эти гены относятся к группам, выполняющим разные физиологические функции, и могут быть диагностическими биомаркерами и играть ключевую роль в механизмах развития развитием сердечно-сосудистых заболеваний. Из них 10 генов кодируют саркомерные белки миокарда, четыре – ферменты, связанные с сердечно-сосудистыми заболеваниями, 10 - белки, активируемые гипоксией миокарда, 18 – белки и пептиды, влияющие на артериальное давление, 15 – белки, связанные с метаболизмом липидов, 17 - транскрипционные факторы. После этого было изучено связывание mRNA этих генов с 6271 miRNA человека. Некоторые гены (например, *NPPA*, *NPPB*, *NPPC*) повторялись в разных группах, так как они участвуют в разных физиологических процессах и их трудно отнести к какой-либо одной определённой группе.

В результате изучения взаимодействия 6271 miRNA человека с mRNA 91 кандидатного гена сердечно-сосудистых заболеваний человека было найдено 438 сайтов связывания miRNA, соответствующих приведенным выше критериям. Только четыре гена имели в своих mRNA сайты связывания miRNA с величиной $\Delta G/\Delta G_m$, равной 100%: ген сердечного тропомиозина TPMI, гены транскрипционных факторов GATA5 и NKX2-5, а также ген фактора свёртываемости крови F2 (протромбина).

miRNA и гены, связанные с инфарктом миокарда

В результате исследований показано, что mRNA 15 кандидатных генов, связанных с развитием инфаркта миокарда, имели 58 сайтов связывания miRNA, из которых 42 находятся в CDS, 11 – в 5'UTR и пять сайтов – в 3'UTR (таблица 1). Ген TTN имел наибольшее число сайтов связывания miRNA – 19, все из которых находились в белок-кодирующей части mRNA. Гены MYH6 и ACTC1 имели по семь сайтов связывания miRNA, MYH7 – пять, AST1 – четыре, гены TPM1, TNNI3 и ACTA2 - по три сайта связывания. Остальные семь генов имели по одному сайту связывания miRNA. Ассоциации miR-19-44540-3р с mRNA гена ACTA2, miR-17-40081-5р с mRNA ASTI, miR-4763-3р с mRNA гена MYL4, miR-15-35627-5p с mRNA гена TPM1 могут быть рекомендованы нами в качестве диагностических маркеров инфаркта миокарда, как имеющие величину ΔG более -130 kJ/mole.

miRNA и гены, связанные с ишемической болезнью сердца

Было установлено, что 27 генов, связанных с ишемической болезнью сердца, имеют в своих mRNA 155 сайтов связывания miRNA, из которых 47 сайтов находятся в 5'UTR, 79 - в CDS и 29 - в 3'UTR (Таблица 2). Подавляющее большинство этих генов имели множественные сайты связывания miRNA. Гены транскрипционных факторов GATA4 и NKX2-5 имели наибольшее число сайтов связывания miRNA - 22 и 21, соответственно. Ген PPARG-C1A имел 14 сайтов связывания, ген VEGFB имел одиннадцать сайтов связывания miRNA, а гены VEGFC, GATA2 и MAPK1 - по десять сайтов. Гены HIF1В и ICAM1 имели по семь сайтов связывания, а ген VEGFA - шесть сайтов. Ген GATA6 имел пять сайтов связывания, а ген *PYGB* – четыре сайта. Остальные гены имели от одного до трёх сайтов связывания miRNA.

Таблица 1 - Характеристики сайтов связывания miRNA в mRNA генов, связанных с инфарктом миокарда

Функция	Ген- мишень	miRNA	Позиция, нт.	Участок mRNA	ΔG, kJ/mole	$\Delta G/\Delta G_{m,}$ %	Длина, нт.
1	2	3	4	5	6	7	8
		miR-15-35627-5p	333	CDS	-123	100	22
	TPM1	miR-19-8151-3p	168	5'UTR	-117	92	21
		miR-1247-5p	348	CDS	-115	90	22
	TNNT2	miR-6-16793-3p	187	CDS	-113	93	20
	TNNI3	miR-17-39011-3p	322	CDS	-119	90	23
		miR-6-16821-3p	413	CDS	-115	90	22
Гены саркомерных		miR-2-7379-5p	792	3'UTR	-123	88	24
		miR-6894-3p	4032	CDS	-113	96	21
белков миокарда		miR-6880-3p	4032	CDS	-110	91	21
		miR-3158-5p	2174	CDS	-106	91	21
	МҮН6	miR-6747-3p	4728	CDS	-106	91	21
		miR-5-4100-5p	5707	CDS	-106	91	22
		miR-15-36549-3p	5198	CDS	-119	90	22
		miR-X-49014-3p	3428	CDS	-119	89	23
	МҮН7	miR-3158-5p	2163	CDS	-106	91	21

			1				
		miR-6747-3p	4717	CDS	-106	91	21
	MYH7	miR-5-4100-5p	5696	CDS	-106	91	21
	111117	miR-X-49014-3p	3492	CDS	-119	89	23
		miR-21-42431-3p	3976	CDS	-123	88	24
	MYH15	miR-19-23535-3p	2857	CDS	-110	93	21
	MYL4	miR-4763-3p	189	CDS	-129	91	24
		miR-133b	51	5'UTR	-110	95	22
		miR-8-4989-5p	174	5'UTR	-115	93	20
		miR-4725-5p	2280	3'UTR	-110	93	21
	ACTC1	miR-133a-3p	51	5'UTR	-108	91	22
		miR-19-40935-3p	1589	3'UTR	-108	91	21
		miR-20-42659-3p	155	5'UTR	-121	90	22
		miR-367-3p	851	CDS	-100	90	22
		miR-19-44540-3p	378	5'UTR	-132	93	23
	ACTA2	miR-6834-3p	616	CDS	-98	92	20
		miR-19-43426-5p	10	5'UTR	-119	92	21
Fault conventantity		miR-4693-5p	92464	CDS	-108	94	23
Гены саркомерных		miR-544b	26044	CDS	-104	93	22
белков миокарда			37245	CDS	-104	93	22
		miR-14-24215-3p	37998	CDS	-102	91	22
			38751	CDS	-104	93	22
	TTN -	miR-4738-3p	74955	CDS	-113	93	22
		miR-19-36945-3p	3271	CDS	-102	92	20
		miR-1-1585-3p	8609	CDS	-96	92	21
		*	37324	CDS	-115	92	22
		miR-6861-5p	38077	CDS	-115	92	22
			38830	CDS	-115	92	22
		miR-136-3p	71469	CDS	-102	91	22
		miR-1278	24928	CDS	-98	90	22
		miR-12-32366-3p	71984	CDS	-108	90	22
		miR-494-5p	1301	CDS	-108	90	23
	TTN	miR-578	1960	CDS	-98	90	21
		miR-374b-3p	17239	CDS	-98	90	22
		miR-374c-3p	17241	CDS	-98	90	22
		miR-3714	17450	CDS	-110	90	22
		miR-17-21872-3p	90	5'UTR	-117	95	20
		miR-7111-3p	691	CDS	-110	91	22
Гены ферментов, связанных с	AST1	miR-17-40081-5p	91	5'UTR	-132	90	23
инфарктом		miR-5-15026-5p	240	CDS	-123	89	23
миокарда	LDHA	miR-1-1126-3p	215	5'UTR	-106	93	20
	1 22 1111						

Ассоциации miR-7-21068-3p c mRNA гена *GATA2*, miR-2-3313-3p, miR-2-3313-3p, miR-3-8100-5p, miR-16-13062-5p, miR-1-155-3p *c GATA4*, miR-20-43102-5p c mRNA гена *GATA5*, miR-6-17815-3p c mRNA гена *GATA6*, miR-6789-5p и miR-6-16980-5p c mRNA гена *HIF1A*, miR-1273g-3p c mRNA гена *ICAM1*, miR-12-33610-3p, miR-9-20317-3p, miR-19-41910-5p c mRNA гена *MAPK1*, miR-19-21199-3p, miR-20-22562-3p, miR-2-3313-3p, mir-1-2121-3p c mRNA

гена NKX2-5, miR-9-20317-3p, miR-5-15733-3p с mRNA гена PPARGC1A, miR-22-45834-5p с mRNA гена PYGB, miR-19-21199-3p, mir-1-2121-3p, miR-20-22562-3p, miR-19-33623-3p, miR-19-30988-5p, miR-3-8100-5p с mRNA гена VEGFB, miR-2-3313-3p, miR-15-32047-5p, miR-17-40081-5p, miR-20-45152-5p с mRNA гена VEGFC могут быть рекомендованы в качестве диагностических маркеров ишемической болезни сердца, как имеющие величину ΔG более -130 kJ/mole.

Таблица 2 - Характеристики сайтов связывания miRNA в mRNA генов, связанных с ишемической болезнью сердца

Функция	Ген-мишень	miRNA	Позиция, нт.	Участок mRNA	ΔG, kJ/ mole	$\Delta G/\Delta G_{m,}$ %	Длина, нт.
1	2	3	4	5	6	7	8
		miR-19-19089-5p	55	5'UTR	-121	92	21
	HIF1A	miR-6-16980-5p	67	5'UTR	-127	91	23
		miR-6789-5p	54	5'UTR	-132	90	24
		miR-466	3105	3'UTR	-106	91	23
		miR-15-36862-3p	3105	3'UTR	-110	91	23
		miR-10-29282-3p	3103	3'UTR	-106	91	23
	HIF1B	miR-6-17487-3p	3113	3'UTR	-113	90	23
		miR-1277-5p	4165	3'UTR	-98	90	24
		miR-935	71	5'UTR	-117	90	23
		miR-19-42814-5p	3114	5'UTR	-104	89	23
	ICAMI	miR-1273g-3p	3032	3'UTR	-114	98	21
		miR-3621	326	CDS	-110	93	20
		miR-466	2989	3'UTR	-106	91	23
		miR-17-39935-3p	3022	3'UTR	-104	91	21
		miR-10-26483-5p	3025	3'UTR	-110	90	22
		miR-15-36862-3p	2987	3'UTR	-108	90	23
		miR-1-1109-3p	106	5'UTR	-117	89	23
Гены,	LDHA	miR-1-1126-3p	215	5'UTR	-106	93	20
активируемые	LDHB	miR-6880-3p	235	5'UTR	-110	91	21
гипоксией миокарда	MB	miR-16-39052-3p	967	3'UTR	-117	89	23
штопарда	MTR	miR-1273g-3p	5017	3'UTR	-108	93	21
		miR-5585-3p	9584	3'UTR	-106	91	22
		miR-1273a	4995	3'UTR	-119	90	25
		miR-9-26506-3p	775	CDS	-113	91	22
		miR-1-3060-3p	621	CDS	-108	90	22
	VECE4		2085	3'UTR			
	VEGFA	miR-1277-5p	3275	3'UTR	-96	88	24
			3314	3'UTR			
		miR-8-21883-3p	887	CDS	-123	88	24
		miR-5-8853-5p	27	5'UTR	-117	93	20
		miR-20-43441-5p	184	5'UTR	-110	93	20
		miR-7-20217-3p	184	5'UTR	-121	92	22
	WEGER	miR-3-10000-3p	222	5'UTR	-119	92	21
	VEGFB	miR-20-22562-3p	20	5'UTR	-138	92	24
		miR-19-33623-3p	6	5'UTR	-136	91	24
		miR-5-16438-3p	5	5'UTR	-119	90	22
		miR-19-30988-5p	140	5'UTR	-130	90	23

		miR-19-21199-3p	5	5'UTR	-140	89	25
	VEGFB	mir-1-2121-3p	6	5'UTR	-140	89	25
	'LGI'B	miR-3-8100-5p	2	5°UTR	-129	88	24
		miR-6891-3p	14	5'UTR	-104	91	21
		miR-10-13655-3p	507	CDS	-127	94	22
Гены,		miR-2-4453-3p	505	CDS	-123	94	21
активируемые		miR-20-43381-5p	512	CDS	-121	92	21
гипоксией		miR-15-32047-5p	505	CDS	-132	90	24
миокарда	VEGFC	miR-17-40081-5p	275	5'UTR	-132	90	23
		miR-2-3313-3p	503	CDS	-142	89	25
		miR-22-46979-5p	503	CDS	-123	89	23
		miR-20-45152-5p	502	CDS	-132	89	24
		miR-19-42501-3p	330	5'UTR	-115	89	24
		miR-520d-5p	3241	3'UTR	-100	94	20
F 4		miR-9-26025-3p	1294	CDS	-117	93	22
Гены ферментов, связанных с	PYGB	miR-497-5p	1235	CDS	-102	91	21
ишемической		miR-22-45834-5p	20	5'UTR	-125	89	23
болезнью сердца	LDHA	miR-1-1126-3p	215	5'UTR	-106	93	20
	LDHB	miR-6880-3p	235	5'UTR	-110	91	21
	EDIID	miR-19-19089-5p	55	5'UTR	-121	92	21
	HIF1A	miR-6-16980-5p	67	5'UTR	-127	91	23
		miR-6789-5p	54	5°UTR	-132	90	24
		miR-466	3105	3'UTR	-106	91	23
		miR-15-36862-3p	3105	3'UTR	-110	91	23
		miR-10-29282-3p	3103	3'UTR	-106	91	23
	HIF1B	miR-6-17487-3p	3113	3'UTR	-113	90	23
	1111 12	miR-1277-5p	4165	3'UTR	-98	90	24
		miR-935	71	5'UTR	-117	90	23
		miR-19-42814-5p	3114	5'UTR	-104	89	23
	GATA1	miR-6834-5p	1275	CDS	-104	91	21
		miR-4669	225	CDS	-110	90	22
		miR-8-21944-3p	1054	CDS	-104	93	20
		miR-2-6824-3p	2340	3'UTR	-119	97	22
		miR-12-5800-5p	415	5'UTR	-115	95	20
		miR-7-21068-3p	314	5'UTR	-138	94	24
		miR-8-4989-5p	413	5'UTR	-115	93	20
Гены факторов	C ATT 13	miR-11-28671-3p	210	5'UTR	-115	90	22
транскрипции	GATA2	miR-4-12483-3p	865	CDS	-115	90	22
		miR-16-38537-3p	877	CDS	-125	89	24
		miR-7-19239-3p	412	5'UTR	-125	89	23
		miR-5-17240-3p	859	CDS	-119	89	23
		miR-8-25030-3p	189	5'UTR	-117	89	23
	CATAR	miR-1-32-5p	923	CDS	-117	92	21
	GATA3	miR-6873-3p	59	5'UTR	-106	89	23
		miR-2-4453-3p	810	CDS	-125	95	21
		miR-1-155-3p	978	CDS	-130	94	22
		miR-22-23987-3p	984	CDS	-123	94	21
		miR-4-6496-3p	816	CDS	-121	93	21
		miR-1-427-3p	538	CDS	-115	93	20
	GATA4	miR-12-5800-5p	806	CDS	-113	93	20
		miR-3-8100-5p	809	CDS	-136	93	24
		miR-10-13655-3p	975	CDS	-125	92	22
		miR-15-37572-3p	619	CDS	-125	92	22
		miR-3-9461-3p	810	CDS	-125	92	23
		miR-9-5204-5p	808	CDS	-123	92	22

		miR-16-38470-3p	679	CDS	-119	92	21
		miR-4-6496-3p	984	CDS	-119	92	21
		miR-9-28523-5p	978	CDS	-115	92	20
		miR-1-155-3p	813	CDS	-125	91	22
		miR-2-3313-3p	807	CDS	-144	91	25
	GATA4	•	979	CDS	-142	89	25
		miR-11-29947-5p	3138	3'UTR	-108	90	22
		miR-3-9441-3p	813	CDS	-125	89	23
		miR-22-46979-5p	976	CDS	-123	89	23
		miR-16-13062-5p	982	CDS	-132	89	24
		miR-16-37977-3p	959	CDS	-127	88	25
		miR-20-43102-5p	311	CDS	-129	100	21
	GATA5	miR-5-14576-5p	347	CDS	-119	92	22
		miR-6749-3p	1680	3'UTR	-113	91	21
		miR-3615	1104	CDS	-110	91	21
		miR-1914-3p	360	CDS	-117	90	22
	GATA6	miR-15-33456-5p	402	CDS	-117	92	22
		miR-6-17815-3p	993	CDS	-136	91	24
		miR-5-16995-5p	1794	CDS	-89	91	21
	ERG	miR-12-31284-3p	465	CDS	-102	92	20
		miR-2-3962-5p	1479	CDS	-127	90	24
		miR-1285-3p	3078	3'UTR	-108	93	22
		miR-7108-5p	11	5'UTR	-115	92	21
	MAPK1	miR-6880-3p	5455	3'UTR	-110	91	21
		miR-17-39570-5p	11	5'UTR	-132	97	22
		miR-6-16793-3p	207	5'UTR	-115	95	20
Гены факторов	1,111 111	miR-17-39416-3p	244	CDS	-121	92	22
транскрипции		miR-12-33610-3p	246	CDS	-136	91	24
		miR-5-14873-3p	243	CDS	-121	91	22
		miR-9-20317-3p	243	CDS	-134	90	24
		miR-19-41910-5p	246	CDS	-132	90	24
	MTOR	miR-491-5p	6826	CDS	-113	93	22
		miR-8-24509-3p	851	CDS	-108	100	17
		miR-19-21199-3p	851	CDS	-153	97	25
		miR-3960	851	CDS	-121	97	20
		miR-20-40417-3p	845	CDS	-113	96	19
		miR-20-43381-5p	855	CDS	-125	95	21
		miR-20-22562-3p	853	CDS	-142	94	24
		miR-2-4453-3p	848	CDS	-123	94	21
		miR-22-23987-3p	854	CDS	-123	94	21
		miR-16-34235-3p	1538	3'UTR	-110	93	20
	7,7,7,2	miR-4-6496-3p	854	CDS	-119	92	21
	NKX2-5	miR-6780b-5p	1046	CDS	-117	92	23
		miR-17-39818-3p	841	CDS	-115	92	22
		miR-11-30772-3p	846	CDS	-121	91	22
		miR-4-11421-3p	849	CDS	-125	89	23
		miR-22-46979-5p	846	CDS	-123	89	23
		miR-19-42016-5p	163	5'UTR	-119	89	23
		miR-15-32047-5p	849	CDS	-129	88	24
		miR-3-8100-5p	844	CDS	-129	88	24
		miR-9-25082-3p	574	CDS	-125	88	24
		miR-2-3313-3p	845	CDS	-140	88	25
		mir-1-2121-3p	846	CDS	-138	88	25
	NOTCH1	miR-1271-5p	1242	CDS	-108	91	22
		miR-486-3p	6091	CDS	-106	91	21

	NOTCH1	miR-6-19010-3p	5181	CDS	-119	89	23
		miR-574-5p	22	5'UTR	-113	93	23
		miR-466	3321	3'UTR	-106	91	23
		miR-15-36862-3p	3325	3'UTR	-115	95	23
		miR-9-20317-3p	146	5'UTR	-140	94	24
			71	5'UTR	-134	90	24
F 1	PPARGC1A	miR-17-39416-3p	135	5'UTR	-123	94	22
Гены факторов транскрипции		miR-10-29282-3p	3339	3'UTR	-108	93	23
транскрипции		miR-3-5147-5p	29	5'UTR	-102	92	22
		'D 101 27070 5	24	5'UTR	-110	91	23
		miR-101-27078-5p	47	5'UTR	-108	89	23
		miR-10-29282-3p	3325	3'UTR	-106	91	23
		miR-19-42814-5p	3338	3'UTR	-104	89	23
		miR-5-1811-3p	36	5'UTR	-121	89	23
		miR-5-15733-3p	149	5'UTR	-132	89	24

Таблица 3 – Характеристики сайтов связывания miRNA в mRNA генов-кандидатов, связанных с артериальной гипертензией

Функция	Ген-мишень	miRNA	Позиция, нт.	Участок mRNA	ΔG, kJ/ mole	$\Delta G/\Delta G_{m,}$	Длина, нт.
1	2	3	4	5	6	7	8
		miR-10-27065-3p	60	CDS	-117	93	21
		miR-X-46577-3p	4792	3'UTR	-106	91	21
	ACE1	miR-13-28252-3p	4068	3'UTR	-117	90	22
	ACEI	miR-3-8100-5p	64	CDS	-132	90	24
		miR-1-2030-3p	4657	3'UTR	-110	90	22
		miR-11-28656-5p	62	CDS	-125	89	23
		miR-877-3p	986	CDS	-106	91	21
	ADRA2B	miR-22-44023-3p	561	CDS	-121	92	21
		miR-17-38391-3p	989	CDS	-117	92	23
		miR-12-32603-3p	978	CDS	-115	92	23
Гены, влияющие		miR-9-25099-3p	994	CDS	-115	90	22
на артериальное давление		miR-15-36451-5p	551	CDS	-121	89	23
	AGT	miR-3126-5p	327	5'UTR	-108	91	22
	AVP	miR-5-18208-3p	257	CDS	-110	93	20
	CYP11B2	miR-17-12514-5p	1982	3'UTR	-104	92	20
	EDN1	miR-548az-5p	1223	3'UTR	-100	90	22
	EDN2	miR-3926	696	3'UTR	-106	94	21
	EDN3	miR-30d-5p	456	CDS	-106	91	22
	EDN3	miR-2-8112-3p	119	5'UTR	-119	93	21
	F2	miR-11-30672-3p	559	CDS	-119	100	21
	E10	miR-1238-5p	52	5'UTR	-115	89	23
	F10	miR-1-2906-3p	31	5'UTR	-110	90	22

	F12	miR-191-5p	59	CDS	-110	90	23
	F12	miR-4-12861-5p	1039	CDS	-119	92	22
	F13A	miR-518e-3p	81	5'UTR	-102	91	21
		miR-5096	2171	3'UTR	-108	96	21
	ECD	miR-1285-5p	2306	3'UTR	-106	94	21
	FGB	miR-2-4826-5p	2291	3'UTR	-113	90	23
		miR-20-43646-5p	2081	3'UTR	-121	89	24
		miR-6501-3p	983	CDS	-115	90	23
		miR-19-43338-3p	3599	CDS	-117	90	22
	NOS3	miR-15-38767-3p	2946	CDS	-123	89	24
		miR-X-45814-5p	3073	CDS	-117	89	24
		miR-3-8846-5p	200	5'UTR	-123	88	24
	MADA	miR-18-40897-3p	3	5'UTR	-117	90	23
	NPPB	miR-2-6278-5p	277	CDS	-110	90	22
	NPPC	miR-15-19078-5p	16	5'UTR	-115	90	22
		miR-4659b-3p	1582	CDS	-104	92	22
	NR3C2	miR-6756-5p	2441	CDS	-123	92	23
		miR-13-28252-3p	87	5'UTR	-117	90	22
	REN	miR-8-22507-5p	1169	CDS	-115	92	22
	GATA1	miR-6834-5p	1275	CDS	-104	91	21
		miR-4669	225	CDS	-110	90	22
		miR-8-21944-3p	1054	CDS	-104	93	20
	GATA3	miR-1-32-5p	923	CDS	-117	92	21
		miR-20-43102-5p	311	CDS	-129	100	21
Гены факторов	GATA5	miR-5-14576-5p	347	CDS	-119	92	22
транскрипции		miR-6749-3p	1680	3'UTR	-113	91	21
	GATA6	miR-3615	1104	CDS	-110	91	21
		miR-1914-3p	360	CDS	-117	90	22
		miR-15-33456-5p	402	CDS	-117	92	22
		miR-6-17815-3p	993	CDS	-136	91	24
		miR-5-16995-5p	1794	CDS	-89	91	21
	FDC	miR-12-31284-3p	465	CDS	-102	92	20
	ERG	miR-2-3962-5p	1479	CDS	-127	90	24
	NOTEGIA	miR-1271-5p	1242	CDS	-108	91	22
	NOTCH1	miR-486-3p	6091	CDS	-106	91	21
		miR-574-5p	22	5'UTR	-113	93	23
		miR-466	3321	3'UTR	-106	91	23
		miR-15-36862-3p	3325	3'UTR	-115	95	23
			146	5'UTR	-140	94	24
		miR-9-20317-3p	71	5'UTR	-134	90	24
		miR-17-39416-3p	135	5'UTR	-123	94	22
	DD4DGG14	miR-10-29282-3p	3339	3'UTR	-108	93	23
	PPARGC1A	miR-3-5147-5p	29	5'UTR	-102	92	22
			24	5'UTR	-110	91	23
		miR-101-27078-5p	47	5'UTR	-108	89	23
		miR-10-29282-3p	3325	3'UTR	-106	91	23
		miR-19-42814-5p	3338	3'UTR	-104	89	23
		miR-5-1811-3p	36	5'UTR	-121	89	23
		miR-5-15733-3p	149	5'UTR	-132	89	24
	1	F					

miRNA и гены, связанные с артериальной гипертензией

Установлено, что 23 гена, связанные с артериальной гипертензией, имели 68 сайтов связывания miRNA. Из них 17 сайтов находились в 5'UTR, 35 – в CDS и 16 – в 3'UTR (Таблица 3). Ген PPARGC1A имел наибольшее число сайтов связывания – 14. Гены ACEI и ADRA2В имели по шесть сайтов связывания miRNA, а гены NOS3 и GATA6 – по пять сайтов. Ген FGB имел четыре сайта связывания, а гены NPPB, GATA1 и GATA5 – по три. Гены *EDN3*, *F10*, *F12*, *ERG*, *NOTCH1* имели по два сайта, а остальные гены - по одному сайту. Ассоциации miR-3-8100-5p с mRNA гена ACE1, miR-11-30672-3p с mRNA гена F2, miR-20-43102-5p с mRNA гена GATA5, miR-6-17815-3р с mRNA гена *GATA6*, miR-9-20317-3р, miR-5-15733-3p с mRNA гена PPARGC1A мы можем рекомендовать в качестве маркеров артериальной гипертензии, как имеющие величину ΔG более -130 kJ/mole.

miRNA и гены, связанные с атеросклерозом и метаболическим синдромом

Кандидатные гены атеросклероза и метаболического синдрома совпадают, за исключением генов INS, INSR, NR3C1 и NR3C2. Было установлено, что 20 генов-кандидатов, связанных с атеросклерозом и метаболическим синдромом, имели 83 сайта связывания miRNA, из которых 22 сайта находились в 5'UTR, 17 – в CDS и 44 - в 3'UTR (Таблица 4). Ген LDLR имел наибольшее число сайтов связывания miRNA – 17. а ген PPARGC1A - 14. Гены ICAM1 и VDR имели по семь сайтов связывания, а ген ADRA2B – шесть. Ген INSR имел пять сайтов связывания, а ген APOD – четыре сайта. Гены APOB, NR3C2 и VLDLR имели по три сайта связывания miR-NA. Гены APOA1, APOE, LCAT, LPL, ERG имели по два сайта связывания, а гены CYP7A1, INS, HMGCR, NR3C1, TNF — по одному.

Ассоциации miR-1-1109-3p c mRNA гена *ICAM1*, miR-4-11316-5p c mRNA гена *INSR*, miR-619-5p c mRNA гена *LDLR*, miR-9-20317-3p, miR-9-20317-3p, miR-9-20317-3p, miR-9-20317-3p c mRNA гена *PPARG-C1A*, miR-619-5p и miR-5095 c mRNA гена *VDR*, miR-9-20317-3p c mRNA гена *VLDLR* мы можем рекомендовать в качестве диагностических маркеров метаболического синдрома, а все эти же ассоциации за исключением сайта связывания miR-4-11316-5p в mRNA гена *INSR*

- для диагностики атеросклероза, как имеющие величину ΔG более -130 kJ/mole.

Обсуждение результатов

В настоящее время при диагностике инфаркта миокарда и ишемической болезни сердца в крови пациентов измеряют концентрацию аланин-трасаминазы, аспартат-трансаминазы, креатин-фосфокиназы, гликоген-фосфорилазы, натрий-уретических пептидов, модифицированного ишемией альбумина, сердечного тропонина, гомосерина, оксида азота и т.д. Фрагменты сердечного мышечного белка титина, поступающие в кровь при разрушении кардиомиоцитов, также были предложены в качестве диагностических маркеров инфаркта миокарда (Bogomolovas, 2016: 232). А при диагностике атеросклероза и метаболического синдрома обычно измеряют уровень холестерина, гомоцистеина и липопротеинов в крови (Kwasny, 2017: 10).

Гены саркомерных белков миокарда (актина, миозина, тропонина, титина и небулина) могут быть новыми диагностическими маркерами инфаркта миокарда, так как кодируемые ими белки составляют структуру миофибрилл и участвуют в их сокращении, а в прединфарктном состоянии их синтез полностью прекращается (Nagueh, 2004: 155).

Гены, активируемые гипоксией миокарда, могут служить новыми диагностическими маркерами ишемической болезни сердца (Bäck, 2017: 49). К ним относятся гены LDHA, LDHB, MTR, PYGB и другие, транскрипционных факторов HIF1A, HIF1B, MYB, и другие, миоглобина (MB), клеточных факторов адгезии (ICAMI, VCAMI) и роста кровеносных сосудов (VEGFA, VEGFB, VEGFC, VEGFD) и т.д. (Chen, 2017:35).

Гены транскрипционных факторов могут быть связаны с ишемической болезнью сердца, артериальной гипертензией, атеросклерозом и метаболическим синдромом, так как они участвуют в эмбриональном развитии сердца и кровеносных сосудов (семейство *GATA*), ангиогенезе (*MYB*), а также запуске некоторых биохимических каскадов, ведущих к развитию этих заболеваний (*MAPK1*, *NKX2-5*, *NOTCH1* и другие). Например, гены транскрипционных факторов *HIF1A* и *HIF1B* активируются при недостатке кислорода в ткани сердечной мышцы и запускают механизмы, ведущие к развитию ишемической болезни сердца (Yunusova, 2017: 35).

Таблица 4 — Характеристики сайтов связывания miRNA в mRNA генов-кандидатов, связанных с атеросклерозом и метаболическим синдромом

Функция	Ген-мишень	miRNA	Позиция, нт.	Участок mRNA	ΔG, kJ/ mole	$\Delta G/\Delta G_{m_s}$ %	Длина, нт.
1	2	3	4	5	6	7	8
	400420	miR-877-3p	986	CDS	-106	91	21
		miR-22-44023-3p	561	CDS	-121	92	21
Гены, связанные		miR-17-38391-3p	989	CDS	-117	92	23
с метаболизмом липидов	ADRA2B	miR-12-32603-3p	978	CDS	-115	92	23
		miR-9-25099-3p	994	CDS	-115	90	22
		miR-15-36451-5p	551	CDS	-121	89	23
	APOA1	miR-10-13655-3p	1169	CDS	-123	91	22
		miR-7-20718-5p	64	5'UTR	-113	90	23
		miR-19-25731-3p	2054	CDS	02	00	20
	APOB	miR-19-25731-5p	2054	CDS	-93	92	20
		miR-13-36375-5p	179	CDS	-119	90	23
		miR-574-5p	21	5'UTR	-113	93	23
	4000	miR-5-1811-3p	30	5'UTR	-127	94	23
	APOD	miR-3-5147-5p	21	5'UTR	-100	90	22
		miR-101-27078-5p	21	5'UTR	-108	90	23
	4005	miR-X-45440-5p	758	CDS	-121	95	22
	APOE	miR-9-23547-5p	881	CDS	-115	93	20
	CYP7A1	miR-5585-3p	1939	3'UTR	-106	91	22
	HMGCR	miR-3920	915	CDS	-98	90	22
	ICAM1	miR-1273g-3p	3032	3'UTR	-115	98	21
		miR-3621	326	CDS	-110	93	20
Гены, связанные		miR-466	2989	3'UTR	-106	91	23
с метаболизмом		miR-17-39935-3p	3022	3'UTR	-104	91	21
липидов		miR-10-26483-5p	3025	3'UTR	-110	90	22
		miR-15-36862-3p	2987	3'UTR	-108	90	23
		miR-1-1109-3p	106	5'UTR	-117	89	23
	INS	miR-16-38416-3p	402	CDS	-115	90	22
		miR-466	5185	3'UTR	-104	89	23
		miR-12-31721-3p	5669	3'UTR	-115	96	21
	INSR	miR-12-30825-5p	5668	3'UTR	-115	92	22
		miR-19-42303-3p	5665	3'UTR	-117	90	23
		miR-4-11316-5p	429	CDS	-132	89	24
		miR-6792-5p	1306	CDS	-106	91	21
	LCAT	miR-3666	628	CDS	-102	91	21
		miR-619-5p	3903	3'UTR	-119	98	22
		miR-5585-3p	4043	3'UTR	-113	96	22
	LDLR	miR-5095	3897	3'UTR	-110	95	21
			4149	3'UTR	-106	94	21
		miR-1285-5p	4451	3'UTR	-106	94	21

		miR-1285-5p	4322	3'UTR	-102	91	21
			4378	3'UTR	-113	93	22
		miR-619-5p	4517	3'UTR	-113	93	22
		miR-1303	4159	3'UTR	-106	91	22
		miR-6751-5p	1438	CDS	-115	90	23
		miR-10-26537-5p	2452	CDS	-108	96	20
	LDLR	miR-X-45975-5p	4004	3'UTR	-96	92	22
		miR-2-4826-5p	4608	3'UTR	-115	92	23
		miR-7-20771-3p	4974	3°UTR	-89	91	21
		miR-8-11096-5p	3890	3'UTR	-113	90	22
			3887	3'UTR	-113	90	22
		miR-17-39466-3p				90	
Гены, связанные		miR-4-12245-3p	4559	3'UTR	-110		22
с метаболизмом липидов	LPL	miR-10-28550-3p	300	5'UTR	-121	92	23
липидов		miR-11-18690-5p	195	5'UTR	-110	90	22
	TNF	miR-20-42898-3p	236	CDS	-121	92	23
	VDR	miR-619-5p	3823	3'UTR	-119	98	22
		-	3972	3'UTR	-113	93	22
		miR-5095	3817	3'UTR	-115	98	21
		miR-5585-3p	3979	3'UTR	108	93	22
		miR-5096	3897	3'UTR	-104	93	21
		miR-6877-3p	2085	3'UTR	-110	91	21
	VDR	miR-1-527-3p	2694	3'UTR	-106	93	20
		miR-1-1714-3p	16	5'UTR	-119	95	20
	VLDLR	miR-17-39416-3p	376	5'UTR	-121	92	22
		miR-9-20317-3p	378	5'UTR	-136	91	24
	NR3C1	miR-10-28550-3p	15	5'UTR	-117	89	23
	NR3C2	miR-4659b-3p	1582	CDS	-104	92	22
		miR-6756-5p	2441	CDS	-123	92	23
		miR-13-28252-3p	87	5'UTR	-117	90	22
		miR-574-5p	22	5'UTR	-113	93	23
		miR-466	3321	3'UTR	-106	91	23
		miR-15-36862-3p	3325	3'UTR	-115	95	23
		iD 0 20217 2	146	5'UTR	-140	94	24
		miR-9-20317-3p	71	5'UTR	-134	90	24
		miR-17-39416-3p	135	5'UTR	-123	94	22
	DD4DGG14	miR-10-29282-3p	3339	3'UTR	-108	93	23
	PPARGC1A	miR-3-5147-5p	29	5'UTR	-102	92	22
Гены факторов транскрипции			24	5'UTR	-110	91	23
транскрипции		miR-101-27078-5p	47	5'UTR	-108	89	23
		miR-10-29282-3p	3325	3'UTR	-106	91	23
		miR-19-42814-5p	3338	3'UTR	-104	89	23
		miR-5-1811-3p	36	5'UTR	-121	89	23
		miR-5-15733-3p	149	5'UTR	-132	89	24
			3823	3'UTR	-119	98	22
		miR-619-5p	3972	3'UTR	-113	93	22
		miR-5095	3817	3'UTR	-115	98	21
	VDR	miR-5585-3p	3979	3'UTR	108	93	22
				 	 		
	YBR			 			
				 			
		miR-5096 miR-6877-3p miR-1-527-3p	3897 2085 2694	3'UTR 3'UTR 3'UTR	-104 -110 -106	93 91 93	21 21 20

Гены, влияющие на артериальное давление, связаны с развитием артериальной гипертензии. Они включают в себя гены некоторых пептидных и белковых гормонов (например, ренина), ферментов синтеза и рецепторов адреналина, норадреналина и альдостерона (ACE1, ACE2, ADR-A2B, ADRB2, AGT, AVP и другие), а также некоторых факторов свёртываемости крови (THPO, F2, F10, F12, F13A1, F13B, FGA, FGB, PLG) и т.д. (Pfeffer, 2017: 30160).

Гены, участвующие в метаболизме липидов, связаны одновременно и с атеросклерозом, и с метаболическим синдромом, так как главной причиной атеросклероза является накопление в крови и проникновение в интиму кровеносных сосудов богатых холестерином липопротеинов низкой (ЛПНП) и очень низкой плотности (ЛПОНП) (Malchow, 2017: 91).

Взаимодействие miRNA с mRNA всех этих генов ранее было мало изучено, что и послужило причиной проведённого исследования. Ассоциации miRNA с генами, которые мы изучили, могут быть предложены в качестве новых маркеров для ранней диагностики сердечно-сосудистых заболеваний. Но при разработке практических основ этого метода нужно учитывать не только энергию связывания miRNA с mRNA генов, но и концентрацию этих miRNA в крови и тканях органов сердечно-сосудистой системы человека. Это объясняется тем, что низкая концентрация miRNA не сможет значительно подавить экспрессию того или иного гена, даже если энергия

её связывания с mRNA этого гена достаточно высока

Таким образом, на основе полученных результатов можно сделать следующие выводы:

- 1. 74 кандидатных гена играют ключевую роль в развитии инфаркта миокарда, ишемической болезни сердца, артериальной гипертензии, атеросклероза, метаболического синдрома и могут быть диагностическими маркерами.
- 2. Часть этих генов повторяется у разных сердечно-сосудистых заболеваний, поэтому механизмы этих заболеваний сходны.
- 3. При ишемической болезни сердца в mRNA кандидатных генов имеется наибольшее число сайтов связывания miRNA по сравнению с другими рассмотренными заболеваниями.
- 4. Наибольшее число сайтов связывания miR-NA содержалось в mRNA генов *GATA4*, *NKX2-5*, *TTN*, *LDLR* и *PPARGC1A*.
- 5. Только у генов *TPM1*, *GATA5*, *NKX2-5* и *F2* mRNA имелись сайты связывания miRNA с величиной $\Delta G/\Delta G_m$, равной 100%.

Работа была проведена в рамках проекта «Разработка метода ранней диагностики сердечно-сосудистых заболеваний на основе микроРНК и их генов-мишеней» (грант №00115RK00286 Министерства образования и науки Республики Казахстан). Мы благодарим Пыркову А.Ю. за создание программы MiRTarget. Авторы признательны Ниязовой Р.Е. и Атамбаевой Ш.А. за создание баз данных тiRNA человека.

Литература

- 1 The World Health Organization. Cardiovascular diseases // Informational Bulletin of WHO. 2015. Vol. 93. P. 285-360.
- 2 The World Health Organization. 10 leading causes of death in the world // Informational Bulletin of WHO. 2014. Vol. 92. P. 1-74.
- 3 O'Gara P.T., Kushner F.G., Ascheim D.D. 2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines // Circulation. 2012. Vol. 12. P. 362-425. DOI:10.1161/CIR.0b013e3182742cf6
- 4 Su Q., Li L., Zhao J., Sun Y., Yang H. MiRNA Expression Profile of the Myocardial Tissue of Pigs_with Coronary Microembolization // Cell Physiology and Biochemistry. 2017. Vol. 43, No. 3. P. 1012-1024. DOI: 10.1159/000481699
- 5 Zeman M., Okuliarova M. Sex-specific cardiovascular susceptibility to ischaemic myocardial injury following exposure to prenatal hypoxia // Clinical Science. 2017. Vol. 131, No. 23. P. 2791-2794. DOI: 10.1042/CS20171255
- 6 Zaiou M., Amri E.H., Bakillah A. The clinical potential of adipogenesis and obesity-related microRNAs // *Nutrition*, *Metabolism & Cardiovascular* Diseases. 2017. Vol. 4753, No. 17. P. 324-349. DOI: 10.1016/j.numecd.2017.10.015
- 7 Garcia-Romero N., Esteban-Rubio S., Rackov G., Carrión-Navarro J., Belda-Iniesta C., Ayuso-Sacido A. Extracellular vesicles compartment in liquid biopsies: Clinical application // Molecular Aspects of Medicine. 2017. Vol. 2997, No. 17. P. 301-306. DOI: 10.1016/j.mam.2017.11.009
- 8 Londina E. Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs // Proceedings of National Academy of Science of the United States of America. 2015. Vol. 112, No. 10. P. 1106-1115. DOI: 10.1073/pnas.1420955112
- 9 Ivashchenko A., Berillo O., Pyrkova A., Niyazova R., Atambayeva S. MiR-3960 binding sites with mRNA of human genes // Bioinformation. 2014. –Vol. 10, No. 7. P. 423-427. DOI: 10.6026/97320630010423

- 10 Ivashchenko A.T., Niiazova R.E., Atambaeva S.A., Pyrkova A.Y., Labeit Z., Aisina D.E., Iurikova O. Y., Pinskii I.V., Akimniiazova A.N., Baizhigitova D., Mamirova A.A. Detection of the associations of miRNAs with target genes participanting in the development of cardiovascular diseases // News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Biological and Medical. 2017. Vol. 5. P. 39-48.
- 11 Bogomolovas J., Gasch A., Bajoras V., Karčiauskaitė D., Šerpytis P., Grabauskienė V., Labeit D., Labeit S. Cardiac specific titin N2B exon is a novel sensitive serological marker for cardiac injury // International Journal of Cardiology. 2016. Vol. 212. P. 232-234. DOI: 10.1016/j.ijcard.2016.03.045
- 12 Kwasny C., Manuwald U., Kugler J., Rothe U. Systematic Review of the Epidemiology and Natural History of the Metabolic Vascular Syndrome and its Coincidence with Type 2 Diabetes Mellitus and Cardiovascular Diseases in Different European Countries // Hormone and Metabolic Research. 2017. Vol. 28. P. 10-32. DOI: 10.1055/s-0043-122395
- 13 Nagueh S.F., Shah G., Wu Y., Torre-Amione G., King N.M., Lahmers S., Witt C.C., Becker K., Labeit S., Granzier H.L. Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy // Circulation. 2004. Vol. 110, No. 2. P. 155-162. https://doi.org/10.1161/01.CIR.0000135591.37759.AF
- 14 Bäck M., Pizarro R., Clavel M.A. Biomarkers in Mitral Regurgitation. Progress in Cardiovascular Diseases. 2017. Vol. 620, No. 17. P. 49-56. DOI: 10.1016/j.pcad.2017.11.004
- 15 Chen G.H., Xu C.S., Zhang J., Li Q., Cui H.H., Li X., Chang L., Tang R., Xu J., Tian X., Huang P., Xu J., Jin C., Yang Y. Inhibition of miR-128-3p by Tongxinluo Protects Human Cardiomyocytes from Ischemia/reperfusion Injury via Upregulation of p70s6k1/p-p70s6k1 // Frontiers in Pharmacology. 2017. Vol. 8, No. 775. P. 61-70. DOI: 10.3389/fphar.2017.00775
- 16 Yunusova N.V., Kondakova I.V., Kolomiets L.A., Afanas'ev S.G., Chernyshova A.L., Kudryavtsev I.V., Tsydenova A.A. Molecular targets for the therapy of cancer associated with metabolic syndrome (transcription and growth factors) // Asia-Pacific Journal of Clinical Oncology. 2017. Vol. 8. P. 35-46. DOI: 10.1111/ajco.12780
- 17 Pfeffer T.J., Hilfiker-Kleiner D. Pregnancy and Heart Disease: Pregnancy-Associated Hypertension and Peripartum Cardiomyopathy. Current Problems of Cardiology. 2017. P. 2806, No. 17. P. 30160-30163. DOI: 10.1016/j.cpcardiol.2017.10.005
- 18 Malchow S., Loosse C., Sickmann A., Lorenz C. Quantification of Cardiovascular Disease Biomarkers in Human Platelets by Targeted Mass Spectrometry // Proteomes. 2017. Vol. 5, No. 4. P. 91-95. DOI: 10.3390/proteomes5040031

References

- 1 The World Health Organization. (2015) Cardiovascular diseases. Informational Bulletin of WHO, vol. 93, pp. 285-360.
- 2 The World Health Organization. (2014) 10 leading causes of death in the world. *Informational Bulletin of WHO*, vol. 92, pp. 1-74.
- 3 O'Gara P.T., Kushner F.G., Ascheim D.D. (2012) 2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. *Circulation*, vol. 12, pp. 362-425. DOI:10.1161/CIR.0b013e3182742cf6
- 4 Su Q., Li L., Zhao J., Sun Y., Yang H. (2017) MiRNA Expression Profile of the Myocardial Tissue of Pigs_with Coronary Microembolization. *Cell Physiology and Biochemistry*, vol. 43, no. 3, pp. 1012-1024. DOI: 10.1159/000481699
- 5 Zeman M., Okuliarova M. (2017) Sex-specific cardiovascular susceptibility to ischaemic myocardial injury following exposure to prenatal hypoxia. *Clinical Science*, vol. 131, no. 23, pp. 2791-2794. DOI: 10.1042/CS20171255
- 6 Zaiou M., Amri E.H., Bakillah A. (2017) The clinical potential of adipogenesis and obesity-related microRNAs. *Nutrition*, *Metabolism & Cardiovascular Diseases*, vol. 4753, no. 17, pp. 324-349. DOI: 10.1016/j.numecd.2017.10.015
- 7 Garcia-Romero N., Esteban-Rubio S., Rackov G., Carrión-Navarro J., Belda-Iniesta C., Ayuso-Sacido A. (2017) Extracellular vesicles compartment in liquid biopsies: Clinical application. *Molecular Aspects of Medicine*, vol. 2997, no. 17, pp. 301-306. DOI: 10.1016/j.mam.2017.11.009
- 8 Londina E. (2015) Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. *Proceedings of National Academy of Science of the United States of America*, vol. 112, no. 10, p. 1106-1115. doi: 10.1073/pnas.1420955112
- 9 Ivashchenko A., Berillo O., Pyrkova A., Niyazova R., Atambayeva S. (2014) MiR-3960 binding sites with mRNA of human genes. *Bioinformation*, vol. 10, no. 7, pp. 423-427. DOI: 10.6026/97320630010423
- 10 Ivashchenko A.T., Niiazova R.E., Atambaeva S.A., Pyrkova A.Y., Labeit Z., Aisina D.E., Iurikova O.Y., Pinskii I.V., Akimniiazova A.N., Baizhigitova D., Mamirova A.A. (2017) Detection of the associations of miRNAs with target genes participanting in the development of cardiovascular diseases. *News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Biological and Medical*, vol. 5, pp. 39-48.
- 11 Bogomolovas J., Gasch A., Bajoras V., Karčiauskaitė D., Šerpytis P., Grabauskienė V., Labeit D., Labeit S. (2016) Cardiac specific titin N2B exon is a novel sensitive serological marker for cardiac injury. *International Journal of Cardiology*, vol. 212, pp. 232-234. DOI: 10.1016/j.ijcard.2016.03.045
- 12 Kwasny C., Manuwald U., Kugler J., Rothe U. (2017) Systematic Review of the Epidemiology and Natural History of the Metabolic Vascular Syndrome and its Coincidence with Type 2 Diabetes Mellitus and Cardiovascular Diseases in Different European Countries. *Hormone and Metabolic Research*, vol. 28, pp. 10-32. DOI: 10.1055/s-0043-122395
- 13 Nagueh S.F., Shah G., Wu Y., Torre-Amione G., King N.M., Lahmers S., Witt C.C., Becker K., Labeit S., Granzier H.L. (2004) Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy. *Circulation*, vol. 110, no. 2, pp. 155-162. https://doi.org/10.1161/01.CIR.0000135591.37759.AF

- 14 Bäck M., Pizarro R., Clavel M.A. (2017) Biomarkers in Mitral Regurgitation. *Progress in Cardiovascular Diseases*, vol. 620, no. 17, pp. 49-56. DOI: 10.1016/j.pcad.2017.11.004
- 15 Chen G.H., Xu C.S., Zhang J., Li Q., Cui H.H., Li X., Chang L., Tang R., Xu J., Tian X., Huang P., Xu J., Jin C., Yang Y. (2017) Inhibition of miR-128-3p by Tongxinluo Protects Human Cardiomyocytes from Ischemia/reperfusion Injury via Upregulation of p70s6k1/p-p70s6k1. *Frontiers in Pharmacology*, vol. 8, no. 775, pp. 61-70. DOI: 10.3389/fphar.2017.00775
- 16 Yunusova N.V., Kondakova I.V., Kolomiets L.A., Afanas'ev S.G., Chernyshova A.L., Kudryavtsev I.V., Tsydenova A.A. (2017) Molecular targets for the therapy of cancer associated with metabolic syndrome (transcription and growth factors). *Asia-Pacific Journal of Clinical Oncology*, vol. 8, pp. 35-46. DOI: 10.1111/ajco.12780
- 17 Pfeffer T.J., Hilfiker-Kleiner D. (2017) Pregnancy and Heart Disease: Pregnancy-Associated Hypertension and Peripartum Cardiomyopathy. *Current Problems of Cardiology*, vol. 2806, no. 17, pp. 30160-30163. DOI: 10.1016/j.cpcardiol.2017.10.005
- 18 Malchow S., Loosse C., Sickmann A., Lorenz C. (2017) Quantification of Cardiovascular Disease Biomarkers in Human Platelets by Targeted Mass Spectrometry. *Proteomes*, vol. 5, no. 4, pp. 91-95. DOI: 10.3390/proteomes5040031