4-бөлім **МИКРОБИОЛОГИЯ**

Раздел 4 **МИКРОБИОЛОГИЯ**

Section 4
MICROBIOLOGY

Акылбаева К.К., Шыныбекова Г.О., Тленчиева Т.М., Садикалиева С.О., Султанкулова К.Т., Сандыбаев Н.Т.

Научно-исследовательский институт проблем биологической безопасности, Казахстан, Жамбылская область, п.г.т. Гвардейский

Лабораторная диагностика гриппа типов А и Б методом ПЦР

Akylbayeva K.K., Shynybekova G.O., Tlenchiyeva T.M., Sultankulova K.T., Sandybaev N.T.

Research Institute of Biological Safety Problems, Kazakhstan, Zhambyl oblast, Gvardeiskiy vil.

Laboratory diagnosis of influenza types A and B by PCR

> Акылбаева К.К., Шыныбекова Г.О., Тленчиева Т.М., Султанкулова К.Т., Сандыбаев Н.Т.

Биологиялық қауіпсіздік проблемаларының ғылыми зерттеу институты, Қазақстан, Жамбыл облысы, Қордай ауданы, қ.т.п. Гвардейский

Тұмаудың А және Б типтерін ПТР әдісімен зертханалық диагностика

В настоящей работе представлен разработанный нами метод для выявления РНК вируса гриппа типов А и Б с использованием мультипраймерной полимеразной цепной реакции. Подобраны специфичные праймеры – InfAM63 и InfAM258, характерные для вируса гриппа типа A и специфичные праймеры InfBM26 и InfBM293, характерные для вируса гриппа типа Б. Специфичность полимеразной цепной реакции была протестирована на нескольких штаммах вируса гриппа типов А и Б, полученных из коллекции микроорганизмов НИИПББ КН МОН РК. Высокая специфичность тест-системы обусловлена тем, что в исследуемом материале выявляется уникальный, характерный только для вируса гриппа типов А и Б фрагмент РНК. Чувствительность разработанной полимеразной цепной реакции определена путем проведения реакции с различными разведениями вирусной РНК. Порог чувствительности вируса гриппа типов A и Б составляет 1x10² копий РНК (0,1 пг) в пробе. Диагностика вируса гриппа типов А и Б с использованием полимеразной цепной реакции позволяет точно и очень быстро (~5-6 часов) выявлять РНК вируса гриппа типов А и Б из клинического материала. При этом возможно одновременное исследование РНК вируса гриппа на типы А и Б.

Ключевые слова: вирус гриппа, ПЦР, специфические праймеры, амплификация, специфичность, чувствительность.

This paper presents the method we developed for detecting RNA of influenza A and B viruses using multi-primer polymerase chain reaction. This technique is based on simultaneous laboratory diagnostics of influenza A and B viruses using polymerase chain reaction and differs by high specificity and sensitivity, which allows to detect minimum amount of influenza virus RNA copies in a test sample. During development of the given method we have selected such specific primers as InfAM63 and InfAM258 for influenza A virus and InfBM26, InfBM293 for influenza B virus. Specificity of the polymerase chain reaction was tested on several strains of the influenza A and B viruses, obtained from the collection of microorganisms of the RIBSP. The polymerase chain reaction identifies in a material the unique DNA fragments specific to influenza A and B viruses. The sensitivity of the test is determined by polymerase chain reaction with various dilutions of viral RNA. The sensitivity threshold of the influenza A and B viruses on the basis of polymerase chain reaction is 1x10² RNA copies (0.1 pg) in a sample. Diagnostics using polymerase chain reaction allows accurately and guickly (~ 5-6 hours) to detect the RNA of the influenza A and B viruses in a clinical material. It is possible to study the RNA of the influenza A and B viruses simultaneously.

Key words: influenza virus, PCR, specific primers, amplification, specificity, and sensitivity.

Бұл мақалада біздің көмегімізбен жобаланған мультипраймерлі полимеразды тізбекті реакцияны (ПТР) пайдалана отырып, құс тұмауы вирусының А және Б типтерінің РНҚ-сын анықтауға арналған әдіс көрсетілген. Осы әдіс зерттелетін сынамадағы тұмау вирусының РНҚ көшірмелер санының ең аз мөлшерін анықтауға мүмкіндік беруге және жоғары телімділігі мен сезімталдығымен ерекшеленуге, тұмау вирусының А және Б типтерін ПТР әдісімен бір уақытта зертханалық диагностикалауға негізделген. Сынамада ПТР негізіндегі тұмау вирусының А және Б типтерінің сезімталдығы РНҚның 1х10² көшірмесін құрайды. Құс тұмауы вирусының А және Б типтерін сәйкестендіруге арналған полимеразды тізбекті реакция әдісін әзірлеу кезінде құс тұмауы вирусының А типіне – InfAM63 и InfAM258 және құс тұмауы вирусының Б типіне – InfBM26 и InfBM293 тән телімді праймерлер таңдалды. ПТР әдісті пайдалана отырып тұмау вирусының А және Б типтерін диагностикалау клиникалық материалдан алынған тұмау вирусының А және Б типтерінің РНҚ-сын нақты және өте жылдам (~ 5-6 сағат) анықтауға мүмкіндік береді. Осылай бола тұра құс тұмауы вирусының А және Б типтерінің РНҚ-сы бір мезгілде зерттелуі мүмкін.

Түйін сөздер: тұмау вирусы, ПТР, телімді праймерлер, амплификация, телімділік, сезімталдық.

УДК 616.921.5-078

Акылбаева К.К.*, Шыныбекова Г.О., Тленчиева Т.М., Садикалиева С.О., Султанкулова К.Т., Сандыбаев Н.Т.

Научно-исследовательский институт проблем биологической безопасности, Казахстан, Жамбылская область, п.г.т. Гвардейский, *e-mail: karla8408@mail.ru

ЛАБОРАТОРНАЯ ДИАГНОСТИКА ГРИППА ТИПОВ А И Б МЕТОДОМ ПЦР

Введение

За последнее десятилетие широкое распространение получили молекулярные методы диагностики гриппа типов А и Б. Наиболее известные и эффективные методы — полимеразная цепная реакция (ПЦР) и полимеразная цепная реакция в реальном времени (ПЦР-РВ). Их принцип основан на многократном умножении участка генома инфекционного агента с последующей его идентификацией. Время анализа для выявления инфекционного агента в материалах такими методами снижается до одного дня, их чувствительность не уступает традиционным методам [1].

На основании структурных различий нуклеопротеида выделяют 3 типа вируса гриппа: А, Б и С. Вследствие особенностей генома вирусу гриппа А свойственна чрезвычайно высокая изменчивость. Это позволяет им вызывать сезонные эпидемии среди людей, вспышки с высоким процентом смертности среди животных и птиц, и является реальной угрозой возникновения пандемий [2].

Известно, что природным резервуаром вируса гриппа типа А являются водоплавающие птицы, сохраняющие все 15 подтипов гемагглютинина и 9 подтипов нейраминидазы вируса гриппа А. У диких водоплавающих птиц вирусы гриппа реплицируются преимущественно в клетках, выстилающих слизистую оболочку кишечника, без проявления признаков заболевания. При этом вирус выделяется в больших количествах с экскрементами. У людей пандемии гриппа вызывали подтипы H1N1, H2N2, H3N2 [3,4].

В настоящее время происхождение подтипов H2N2, H3N2 ассоциируется с генетической реассортацией между вирусами человека и птиц, а пандемический подтип H1N1, вероятно возник вследствие реассортации между вирусами гриппа человека и свиньи [5]. Считается, что промежуточным хозяином являются свиньи, так как эти животные могут служить хозяином как птичьей, так и человеческой инфекции [6]. Молекулярно-биологические исследования показали, что свиньи имеют рецепторы и для птичьего вируса гриппа, и для вируса гриппа человека. Особенно четко прослежена роль этих животных в межвидовой

трансмиссии вируса гриппа A, подтипа H1N1. Таким образом, пандемический штамм может возникнуть в результате генетической реассортации между вирусами гриппа человека и птиц в организме свиньи [7].

Для вируса гриппа Б характерно наличие только одного типа гемагглютинина и нейраминидазы. Этот вирус также способен изменять свою антигенную структуру, продуцируя новые штаммы. Однако он более устойчив. По этой причине вирусы гриппа типа Б не вызывают пандемии и обычно являются причиной локальных вспышек [8]. Болезнь при инфицировании вирусом гриппа Б, как правило, протекает в более лёгкой форме, поражая чаще всего людей молодого возраста. Характерной особенностью вируса гриппа Б является то, что он циркулируют только в человеческой среде.

Существуют много публикаций [9,10,11], посвященных разработке тестов для обнаружения вируса гриппа на основе ПЦР. Однако вариабельность генома вируса гриппа вызывает серьезные проблемы при диагностике и иногда является причиной появления ложно отрица-

тельных результатов. В этой связи, важной задачей явилось создание более чувствительного теста, позволяющие выявлять не только вирус гриппа типа А, но также и тип Б. В связи с чем, цель нашего исследования состояла в разработке быстрого и чувствительного метода на основе мультипраймерной ПЦР для скрининга клинических образцов на наличие вируса гриппа типов А и Б.

Материалы и методы исследований

В данном исследовании используемые 9 штаммов гриппа типа A, 4 штамма гриппа типа Б, 3 штамма гриппа типа С, в качестве возбудителей, вызывающие респираторные заболевания Adenovirus; Enterovirus; Coronovirus; Herpesvirus; Escherichia coli. были взяты из коллекции микроорганизмов Научно-исследовательского института проблем биологической безопасности (НИИПББ) КН МОН РК.

Список штаммов из коллекции микроорганизмов НИИПББ КН МОН РК использованных в работе, приведены в таблице 1.

Таблица 1 – Вирусы из коллекции микроорганизмов НИИПББ, использованные в рабо	Таблица 1 -	 Вирусы из коллекции мик 	роорганизмов НИИПББ.	использованные в рабо	оте
---	-------------	---	----------------------	-----------------------	-----

№	Штамм	Характеристика штамма	Год выделения		
Грипп типа А					
1	A/Astana/818/2009 (H1N1	вирулентный	2009		
2	A/Astana/830/2009 (H1N1)	вирулентный	2009		
3	A/Gvardeyskiy/07/2009 (H1N1)	вирулентный	2009		
4	A/Taraz/01/2009 (H1N1)	вирулентный	2009		
5	А/лошадь/Отар/764/07 (Н3N8)	вирулентный	2007		
6	А/лошадь 1/Киргизия/74(H7N7)	вирулентный	1993		
7	A/утка/Павлодар/05/1 (H5N1)	вирулентный	2005		
8	А/домашний гусь/Павлодар/05(H5N1)	вирулентный	2005		
9	А/крачка/Южная Африка/61(H3N5)	вирулентный	1988		
Грипп типа Б					
10	В/Санкт-Петербург/30/09, линия В(V)	линия Victoria	2008		
11	В/Самара/97/08, линия В(Y)	линия Yamagata	2009		
12	B/Brisbane 60/2008, линия B(V)	вирулентный	2008		
13	В/Санкт-Петербург/30/09, линия В(V)	линия Victoria	2008		
Грипп типа С					
14	С/Ленинград/232/9/83	вирулентный	2012		
15	С/Улан-Уде/34/86	вирулентный	2012		
16	C/Taylor/1233/47	вирулентный 2012			
Adenovirus (Инфекционный гепатит собак (ИГС))					
17	Гевак (ИГС)	вакцинный	1994		

Продолжение таблицы 1

№	Штамм	Характеристика штамма Год выделения			
	Enterovirus (Везикулярная болезнь свиней (ВЭС))				
18	Италия 3/73-113 (ВЭС)	вирулентный 1997			
	Coronovirus (Инфекционный бронхит птиц (ИБП))				
19	Коннектикут (ИБП)	вирулентный 1987			
20	Чапаевский (ИБП)	вирулентный	1989		
	Herpesvirus (ИЛТ, ИРТ)				
21	Майкудукский (ИЛТ)	вирулентный	2002		
22	Актюбек (ИРТ)	вирулентный	2001		
	Escherichia coli				
23	E. coli K-18		1994		

Подбор и синтез специфических праймеров.

Для всех полноразмерных кодирующих последовательностей нуклеотидов вируса гриппа типов A и Б проведено множественное выравнивание с использованием программного обеспечения «Меда 6.0» по алгоритму «Clustal W». Нуклеотидные последовательности выравнивались методом «прогрессивного множественного выравнивания». Анализ специфичности подобранных олигонуклеотидных праймеров проведен с использованием программы BLAST (Basic Local Alignment Search Tool), где можно сравнить имеющуюся последовательность с последовательностями из базы данных на сервере NCBI BLASТанализа (NCBI, http://www.ncbi.nlm.nih.gov).

Синтез праймеров осуществлён на синтезаторе олигонуклеотидов Expedite 8909, Applied Biosystems (США).

Выделение РНК вируса гриппа типов А и Б проведено бесфенольным методом с использованием лизирующих и промывочных растворов [12].

Синтез кДНК. Реакцию обратной транскрипции проводили после получения РНК. Реакционная смесь для синтеза кДНК вируса гриппа состояла: буфер для синтеза кДНК, 5×6 буфер — 6 мкл; 10 мМ dNTP mix — 0.6 мкл; $MgSO_{4-}2.4$ мкл; праймер для кДНК Uni12-1.0 мкл; фермент MMLV ревертаза (Invitrogen, США) — 0.6 мкл; деионизированная стерильная вода — 15.4 мкл; PHK-4 мкл, с концентрацией 85 пмоль. Подготовленную смесь обратной транскрипции инкубировали 10 мин при комнатной температуре, затем при температуре 42 °C и инкубировали в течение 60 мин. Далее инкубировали при 94 °C 2 мин. Синтезируемая кДНК хранилась при минус 20 °C продолжительное время. Амплификацию

проводили на амплификаторе GeneAmp PCR 2720, Applied Biosystems (США).

Постановка ПЦР с синтезированной кДНК. Проведена наработка фрагментов кДНК генов типов А и Б вируса гриппа с помощью набора Таq полимераза фирмы «Силекс» (Россия). Для постановки ПЦР использована мультипраймерная система, т.е. смесь специфических праймеров гриппа А — InfAM68F — 5'-GTTC-CGTCAGGCCCCTCAA-3' и InfAM253R — 5'-ACGCTGCAGTCCTCGCTCAC-3', вируса гриппа Б — InfBM26F — 5'- TGTCGCT-GTTTGGGAGACACA-3' и InfBM293R — 5'-GCTGTTGTTCCCATTCCTGA-3'.

Размеры амплифицирующих участков кДНК для вируса гриппа типов A и Б составляют 185 п.н. и 267 п. н., соответственно.

Общая реакционная смесь на одну реакцию состоит из следующих компонентов: x10 ПЦР буфер – 5 мкл; 10 мМ dNTP mix – 1мкл; Таq ДНК полимераза (5 ед.) – 0,8 мкл; кДНК – 5 мкл, концентрация – 85 пмоль; по 1 мкл каждого праймера с концентрацией 20 пмоль; деионизированная стерильная вода – 34,2 мкл.

Температурно-временной режим амплификации проведен согласно программе: 1) 94°C – 2 мин.; 2) 35 циклов 94°C – 30 с., 55°C – 30 с., 72°C – 1 мин., пост-амплификация 72°С – 7 мин. В качестве положительного контроля использованы плазмидные ДНК, содержащие фрагменты генов М вируса гриппа типов А и Б, а в качестве отрицательного контроля использована деионизированная вода. Амплификацию проводили на амплификаторе GeneAmp PCR 2720, Applied Biosystems (США).

Анализ продуктов ПЦР. Анализ продуктов проведён в 2 % агарозном геле, содержащем 1

мкл/мл бромистого этидия в ТВЕ буфере. Использован аппарат для анализа нуклеиновых кислот G-100, Pharmacia (Швеция).

Результаты

В настоящее время уже имеются публикации [13,14], посвященные разработке праймеров для обнаружения вируса гриппа на основе метода полимеразной цепной реакции. В связи с этим для нас важной задачей явилось создание чувствительного теста, позволяющий выявлять все вирусы гриппа, относящиеся к типам А и Б.

Для конструирования специфичных праймеров проведено сравнение нуклеотидных последовательностей различных штаммов вируса гриппа типов А и Б. При подборе праймеров учтены все возможные критерии, влияющие на дальнейшую амплификацию.

В качестве мишени для подбора праймеров на вирус гриппа типов А и Б выбрана область М гена, который является высококонсервативным участком генома. На эту область были подобраны две пары специфических праймеров, для вируса гриппа А – InfAM68F и InfAM253R, для вируса гриппа Б – InfBM26 и InfBM293, амплифицирующие участок длиной 185 и 267 п.н., соответственно.

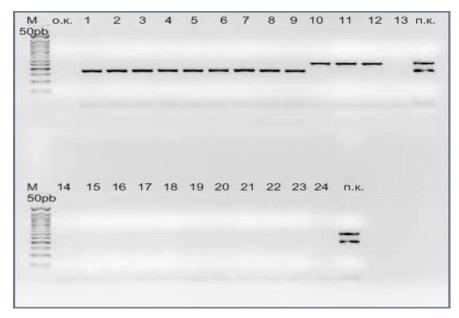
Для определения специфичности ПЦРиспользованы вирусы гриппа: A/Gvardeyskiy/07/2009 A/Astana/818/2009 (H1N1);Astana/830/2009 (H1N1); A/Taraz/01/2009 (H1N1); А/лошадь/Отар/764/07 (H3N8); А/лошадь 1/ Киргизия/74(Н7N7); А/утка/Павлодар/05/1 (H5N1); А/домашний гусь/Павлодар/05(H5N1); А/крачка/Южная Африка/61(Н3N5); В/Санкт-Петербург/30 /09, линия B(V); B/Самара/97/08, линия B(Y); B/Brisbane 60/2008, линия B(V); С/Ленинград/232/9/83; С/Улан-Уде/34/86; Taylor/1233/47. Также использованы возбудители, вызывающие респираторные заболевания: инфекционный гепатит собак; везикулярная болезнь свиней; инфекционный бронхит птиц; инфекционный ларинготрахеит птиц; Е. coli. В качестве отрицательного контроля при определении специфичности ПЦР применена деионизированная вода. Полученные результаты представлены на рисунке 1.

Размер полученных фрагментов при гриппе A соответствовал расчетному значению 185 п.н., а при гриппе Б 267 п.н. (рис. 1).

При определении специфичности метода для диагностики вирусов гриппа типов А и Б методом ПЦР было установлено, что во всех пробах, со-

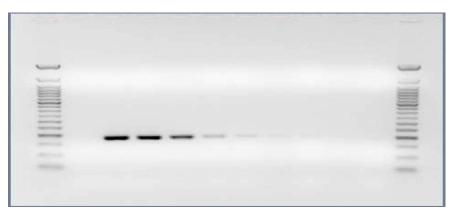
держащих кДНК вируса гриппа А (пробы № 1-9) нарабатывались специфические продукты реакции — фрагменты ДНК размером 185 п.н., а в пробах, содержащих кДНК вируса гриппа Б (пробы № 10-12) нарабатывались специфические продукты реакции — фрагменты ДНК размером 267 п.н.

Отрицательные результаты были получены при использовании вирусов гриппа типа С, штаммов С/Ленинград/232/9/83; С/Улан-Уде/34/86; С/Тауlor/1233/47. Также отрицательные результаты были получены при использовании возбудителей, вызывающие респираторные заболевания. В качестве возбудителей, вызывающие респираторные заболевания использованы: инфекционный гепатит собак; везикулярная болезнь свиней; инфекционный бронхит птиц; инфекционный ларинготрахеит птиц; Е. coli. Отсутствие каких-либо продуктов амплификации наблюдается и с деионизированной водой (ОК – отрицательный контроль).


При определении чувствительности ПЦР метода использованы отработанные оптимальные температурно-временные условия реакции и были взяты 10-кратные разведения РНК вируса гриппа типов А и Б от 100 нг (1х10⁸ копий РНК) до 0,01 пг (1х10 копий РНК). Полученные результаты представлены на рисунке 2 и 3.

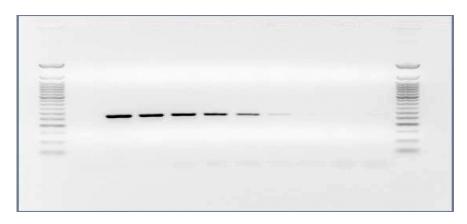
При оценке чувствительности метода при тестировании 10-кратных разведении РНК вируса гриппа типов A и Б от 100 нг ($1x10^8$ копий РНК) до 0,01 пг(1x10 копий РНК) порог чувствительности составил 0,1 пг или $1x10^2$ копий РНК вируса гриппа типов A и Б.

Обсуждение


ПЦР тест-системы являются наиболее совершенными диагностическими средствами молекулярной биологии, молекулярной генетики и клинической лабораторной диагностики, позволяющими выявлять в тканях и биологических жидкостях организма единичные клетки возбудителей многих инфекционных заболеваний. В настоящее время значительно возросли требования, предъявляемые к диагностическим препаратам. Применяемые диагностические ПЦР тест-системы должны обладать помимо быстроты ответа, высокой чувствительностью, гарантировать обнаружение вируса в материалах с малым его содержанием, а также обеспечивать дифференциацию близкородственных вирусов.

Результаты целого ряда исследований [9-11], свидетельствуют о применении ПЦР диагностики при идентификации гриппа.

М — Маркер; 50 bp BioLabs; о.к. — Отрицательный контроль; (Вирусы гриппа типа А — 1-9) 1- штамм А/Gvardeyskiy/07/2009(H1N1); 2 — штамм А/Astana/818/2009(H1N1); 3- штамм А/Astana/830/2009(H1N1); 4 — штамм А/Taraz/01/2009(H1N1); 5 — штамм А/лошадь/Отар/764/07(H3N8); 6 — штамм А/лошадь/Киргизия/74(H7N7); 7 — штамм А/утка/Павлодар/05/1(H5N1); 8 — штамм А/ до-машний гусь/ Павлодар/05(H5N1); 9 — штамм А/крачка/Южная Африка/61(H3N5); (Вирусы гриппа типа Б — 10-12) 10 — штамм В/Санкт-Петербург/03/09, линия В(V); 11 — штамм В/Санкт-Петербург/03/09, линия В(V); 11 — штамм В/Самара/97/08, линия В(Y); 12 — штамм В/Вrisbane 60/2008, линия В(V); 13 — штамм "Гевак" (ИГС); 14 — штамм "Италия" (ВЭС); 15 — штамм "Коннектикут" (ИБП); 16 — штамм "Майкудукский" (ИЛТ); 17 — штамм З/Белорусский; 18 — штамм "Италия" (ВЭС); 19 — штамм "Чапаевский" (ИБП); 20 — Е. coli K-18; 21 — штамм "Актюбек" (ИРТ); (Вирусы гриппа типа С — 22-24) 22 — штамм С/Ленинград/232/9/83; 23 — штамм С/Улан-Уде/34/86; 24 — штамм С/Тауlor/1233/47; п.к. — положительный контроль — смесь кДНК вирусов гриппа типов А и В (А + В).


Рисунок 1 – Электрофореграмма ПЦР продуктов с специфическими праймерами вируса гриппа типов A – InfAM68F – InfAM253R и гриппа Б InfBM26F – InfBM293R

M OK 1 2 3 4 5 6 7 8 M

M — Маркер 50 bp BioLabs; Использовали РНК вируса A/Astana/818/2009(H1N1) в следующих концентрациях: I-100 нг ($Ix10^8$ копий РНК); 2-10 нг ($Ix10^7$ копий РНК); 3-1 нг ($Ix10^6$ копий РНК); 4-100 пг ($Ix10^5$ копий РНК); 5-10 пг ($Ix10^4$ копий РНК); 6-1 пг ($Ix10^3$ копий РНК); 7-0,1 пг ($Ix10^2$ копий РНК); 8-0,01 пг(Ix10 копий РНК).

Рисунок 2 — Электрофореграмма ПЦР продуктов с специфическими праймерами вируса гриппа типов A — InfAM68F — InfAM253R и гриппа Б InfBM26F — InfBM293R

M — Маркер 50 bp BioLabs; Использовали РНК вируса Б/Brisbane 60/2008, линия B(V) в следующих концентрациях: 1-100 нг ($1x10^8$ копий РНК); 2-10 нг ($1x10^7$ копий РНК); 3-1 нг ($1x10^6$ копий РНК); 4-100 пг ($1x10^5$ копий РНК); 5-10 пг ($1x10^4$ копий РНК); 6-1 пг ($1x10^3$ копий РНК); 7-0, 1 пг ($1x10^2$ копий РНК); 8-0, 01 пг (1x100 копий РНК).

Рисунок 3 — Электрофореграмма ПЦР продуктов с специфическими праймерами вируса гриппа типов A — InfAM68F — InfAM253R и гриппа Б InfBM26F — InfBM293R

На сегодняшний день необходимость мониторинга вируса гриппа у человека, животных и птиц чрезвычайно велика. Вирусологические методы обнаружения вируса гриппа (пассирование на куриных эмбрионах или на культуре клеток с последующей идентификацией в реакции гемагглютинации или реакции торможения гемагглютинации) надежны и чувствительны, однако они довольно трудоемки и на их выполнение требуется от 1 до 2 недель.

В настоящей работе представлена разработанная методика для одновременной лабораторной диагностики вируса гриппа типов А и Б методом ПЦР. Для оценки результативности и достоверности теста была определена специфичность и чувствительность ПЦР для выявления РНК вируса гриппа. При сравнении нуклеотидных последовательностей генома вируса гриппа были выбраны группы праймеров специфичных для двух типов, которые могут выявлять РНК вируса гриппа типов А и Б одновременно.

Специфичность ПЦР была протестирована на нескольких штаммах вируса гриппа типов А и Б, полученных из коллекции микроорганизмов НИИПББ КН МОН РК. Высокая специфичность ПЦР тест-системы обусловлена тем, что в исследуемом материале выявляется уникальный, характерный только для вируса гриппа типов А и Б фрагменты ДНК. Специфичность задается нуклеотидной последовательностью праймеров, что исключает возможность получения ложных результатов в отличие от иммунологических ме-

тодов анализа, где могут быть ошибки в связи с перекрестно-реагирующими антигенами.

Чувствительность разработанной ПЦР определена путем проведения ПЦР с различными разведениями вирусной РНК. На проведение ПЦР брали 10-ти кратные разведения РНК вируса гриппа типов А и Б от 100 нг до 0,01 пг. При этом, порог чувствительности тест-системы для диагностики гриппа типов А и Б на основе ПЦР набора составляет 1х10² копий РНК вирусов в пробе.

Разработанный метод для лабораторной диагностики вируса гриппа типов А и Б на основе ПЦР является специфичным и высокочувствительным, обеспечивает высокий уровень диагностических исследований и может быть использована для проведения мониторинга гриппа.

Выводы

В результате проведенных исследований по разработке метода для идентификации вируса гриппа типов А и Б методом ПЦР можно сделать следующие выводы:

- подобрана пара специфичных праймеров InfAM63 и InfAM258, амплифицирующие участок длиной 185 п. н., характерная только для вируса гриппа типа A;
- подобрана пара специфичных праймеров InfBM26 и InfBM293, амплифицирующие участок длиной 267 п. н., характерная только для вируса гриппа типа Б;
 - разработанный метод на основе ПЦР яв-

ляется высокочувствительным и специфичным при диагностике вируса гриппа типов А и Б.

- данный метод постановки ПЦР при выявлении вируса гриппа типов А и Б позволяет проводить диагностику вируса при содержании в исследуемом материале $1x10^2$ копий геномной вирусной РНК.

Таким образом, разработанный метод позволяет с довольно высокой степенью точ-

ности в короткие сроки выявлять РНК вируса гриппа типов А и Б в пробе, с использованием специфических праймеров и диагностировать данную инфекцию за 3,5-4 часа. При этом возможно одновременное исследование большого количества проб. Полученные данные являются основой разработки тест-системы методом ПЦР для идентификации вируса гриппа типов А и Б

Литература

- 1 Quilivan M., Cullinane A., Nelly M., et al. Comparison of Sensitivities of Virus Isolation, Antigen Detection and Nucleic Acid Amplification for Detection of Equine Influenza Virus // J. Clin. Microbiol. 2000. Vol. 42, No. 2. P. 759-763.
- 2 Kamps B. S., Hoffmann C., Preiser W. Influenza Report 2006 / B. S. Kamps, C. Hoffmann, W. Preiser W. Flying Publisher, 2006.
- 3 Wright S.M., Kawaoka Y., Sharp G.B., e.a. Interspecies transmission and reassortment of influenza Aviruses in pigs and turkeys in United States // Arm J Epidemiol. 1992. Vol. 136. P. 448-97.
- 4 Blinov V.M., Kiselev O.I. An analyses of the potential areas of recombination in the hemmaglutinin genes of animal influenza viruses in relation to their adaptation to a new host-man // Vopr. Virusol. 1993. Vol.38, No 6. P. 263-268.
- 5 Kida H., Ito T., Yasuda J., e.a. Potential for transmission of avian influenza viruses to pigs // J Gen Virol. 1994. Vol.74. P.2183-2188.
 - 6 Webster R.G. The importance of animal influenza for human disease // J. Vac. 2002. Vol. 20, No. 2. P.16-20.
- 7 Hiromoto Y., Yamazaki Y., Fukushima T., e.a. Evolutionary characterization of the six internal genes of H5N1 human influenza A virus // J Gen Virol. 2000. Vol.81. P. 1293-1303.
- 8 Flandorfer A., Garcia-Sastre A., Basler C. and Palese P. Chimeric influenza A viruses with a functional influenza B virus neuraminidase or hemagglutinin // J. Virol. 2003. Vol.77. P. 9116-9123.
- 9 Fouchier R. A. et al. Detection of influenza A viruses from different species by PCR amplification of conserved sequences in the matrix gene // J Clin Microbiol. 2000. Vol.38. P. 4096-4101.
- 10 Boom R., Sol C., Salimans M. Rapid and simple method for purification of nucleic acids // J. Clin Microbiol. 1990. Vol. 28. P. 495-503.
- 11 WHO (2002). WHO manual on animal influenza diagnosis and surveillance. Geneva, World Health Organization (document WHO/CDS/CSR/NCS/2002.5, available at: http://www.who.int/csr/resources/publications/influenza/en/whocdscsrncs20025rev.pdf
- 12 Патент «Способ бесфенольного выделения нативной РНК высокопатогенного вируса гриппа птиц из вируссодержащего материала для постановки полимеразной цепной реакции», № 60599 от 29.01.2007 Султанкулова К.Т., Сандыбаев Н.Т., Зайцев В.Л., Жолдыбаева Е.В., Строчков В.М., Мамадалиев С.М.
- 13 Spackman E. Avian influenza virus detection and quantitation by real-time RT-PCR $/\!/$ J. Methods Mol Biol. -2014. Vol. 1161. P. 105-108.
- 14 Bin Zhou, Matthew E. Donnelly., Derek T. Scholes, Single-Reaction Genomic Amplification Accelerates Sequencing and Vaccine Production for Classical and Swine Origin Human Influenza A Viruses // J. Virol. 2009 Oct. Vol. 83(19). P. 10309-10313.

References

- 1 Quilivan M, Cullinane A, Nelly M, et al. (2000) Comparison of Sensitivities of Virus Isolation, Antigen Detection and Nucleic Acid Amplification for Detection of Equine Influenza Virus. Clin Microbiol, 42(2):759-763.
 - 2 Kamps BS, Hoffmann C, Preiser W (2006) Influenza Report 2006 (Kamps BS, Hoffmann C, Preiser W), Flying Publisher
- 3 Wright SM, Kawaoka Y, Sharp GB, e.a. (1992) Interspecies transmission and reassortment of influenza Aviruses in pigs and turkeys in United States. Arm J Epidemiol, 136:448-97.
- 4 Blinov VM, Kiselev OI (1993) An analyses of the potential areas of recombination in the hemmaglutinin genes of animal influenza viruses in relation to their adaptation to a new host-man. Vopr Virusol, 38(6):263-268.
 - 5 Kida H, Ito T, Yasuda J, e.a. (1994) Potential for transmission of avian influenza viruses to pigs. J Gen Virol, 74:2183-2188.
 - 6 Webster RG (2002) The importance of animal influenza for human disease. J. Vac, 20(2):16-20.
- 7 Hiromoto Y, Yamazaki Y, Fukushima T, e.a. (2000) Evolutionary characterization of the six internal genes of H5N1 human influenza A virus. J Gen Virol. 81:1293-1303.
- 8 Flandorfer A, Garcia-Sastre A, Basler CF and Palese P (2003) Chimeric influenza A viruses with a functional influenza B virus neuraminidase or hemagglutinin. J. Virol, 77:9116-9123.
- 9 Fouchier RA et al. (2000) Detection of influenza A viruses from different species by PCR amplification of conserved sequences in the matrix gene. J Clin Microbiol, 38:4096-4101.

- 10 Boom R, Sol C, Salimans M (1990) Rapid and simple method for purification of nucleic acids. J. Clin Microbiol, 28:495-503.
- 11 WHO (2002). WHO manual on animal influenza diagnosis and surveillance. Geneva, World Health Organization (document WHO/CDS/CSR/NCS/2002.5, available at: http://www.who.int/csr/resources/publications/influenza/en/whocdscsrncs20025rev.pdf
- 12 Patent «A method for the phenol-free isolation of native RNA of a highly pathogenic avian influenza virus from a virus-containing material for polymerase chain reaction» № 60599 from 29.01.2007 Sultankulova KT, Sandybayev NT, Zaitsev VL, Zholdybaeva EV, Strochkov VM, Mamadaliev SM (In Russian)
- 13 Spackman E (2014) Avian influenza virus detection and quantitation by real-time RT-PCR. J. Methods Mol Biol, 1161:105-108
- 14 Bin Z, Matthew ED, Derek TS (2009) Single-Reaction Genomic Amplification Accelerates Sequencing and Vaccine Production for Classical and Swine Origin Human Influenza A Viruses. J. Virol, 83(19):10309-10313.