УДК 575.633.11

А.А. Токубаева*, К.К. Шулембаева, А.Т. Сарбаев

Казахский национальный университет им. аль-Фараби, Республика Казахстан, г. Алматы *E-mail: anar.tokubaeva@mail.ru

Генетика устойчивости к листовой ржавчине избранных образцов пшеницы мировой коллекции

Популяция гибридов F_2 расщеплялась на устойчивые и восприимчивые растения, соответствующие ди- и моногенному наследованию, кроме гибридов, полученных с участием изогенных линий Lr1, Lr10, Lr26, Lr28, Lr29, Lr34, Lr39, Lr50 c короткостебельным образцом СИМ79/279 и Lr1, Lr9, Lr10, Lr28, Lr29, Lr34, Lr39, Lr50 к-24/20989. Устойчивость короткостебельных образцов линии СИМ79/279 и к-24/20989 наследуется по типу эпистаза и комплементарного взаимодейстия генов. Гены устойчивости к листовой ржавчине СИМ79/279 аллельны высокоэффективным тестерным генам Lr1, Lr10, Lr26, Lr28, Lr29, Lr34, Lr39, Lr50, а линия к-24/20989 – Lr1, Lr9, Lr10, Lr28, Lr29, Lr39, Lr50 сорта Thatcher. Основные гены высокой устойчивости к листовой ржавчине линии СИМ79/279 и к-24/20989 тип устойчивости к 56 расе листовой ржавчины показали «О» баллов. Причем обе иммунные линии оказались гетерозиготными по нескольким генам устойчивости.

Ключевые слова: пшеница, бурая ржавчина, аллель, ген, локализация, идентификация.

A.A. Tokubayeva, K.K. Shulembaeva, A.T. Sarbaeбaev Genetics of resistance to leaf rust selected samples of wheat world collection

Resistance of short stature sample line SIM79/279 and k-24/20989 inherited by the type of epistasis and complementary interaction of genes. Genes resistance to leaf rust SIM79/279 allelic to highly effective tester genes , Lr10, Lr26, Lr28, Lr29, Lr34, Lr39, Lr50 and line k-24/20989 – Lr1, Lr9, Lr10, Lr28, Lr29, Lr39, Lr50 of variety Thatcher. Main genes high resistance to leaf rust of lines SIM79/279 and k-24/20989 localized in chromosome 1B, 1A and 6B, 5D, respectively.

Key words: wheat, leaf rust, allele, gen, localization, identification.

А.А. Токубаева, К.К. Шулембаева, А.Т. Сарбаев Бидайдың әлемдік коллекциясынан таңдалған үлгілерінің қоңыр тат ауруына төзімділігінің генетикасы

Қысқасабақты линияларының СИМ79/279 және к-24/20989 төзіділігі эпистаз және комплементарлы гендердің әсер ету типі бойынша тұқымқуалайды. СИМ79/279 линиясының қоңыр татқа төзімді гендері Thatcher сортының эффективтілігі жоғары тестерлі гендеріне, Lr10, Lr26, Lr28, Lr29, Lr34, Lr39, Lr50 аллельді, ал к-24/20989 линиясы – Lr1, Lr9, Lr10, Lr28, Lr29, Lr39, Lr50 аллельді. СИМ79/279 және к-24/20989 линияларының қоңыр татқа төзімділігі бойынша жоғары негізгі гендері, сәйкесінше 1В, 1А және 6В, 5D хромосомаларында локализацияланған.

Түйін сөздер: бидай, қоңыр тат, аллель, ген, локализация, идентификация.

Введение

Бурая или листовая ржавчина (возбудитель *Puccinia triticina* Erikss, syn.: *P. recondita* Roberge: Desm. f. sp. *Tritici* Erikss) – одна из наибо-

лее распространенных и вредоносных болезней мягкой пшеницы *Triticum aestivum* L. Ежегодные потери урожая пшеницы от поражения листовой ржавчиной в Казахстане достигают 3,5% и 4,5%, в случае, когда эпидемия развивается

рано и инфекция сохраняется до полного созревания пшеницы, потери возрастают до 40-60% урожая [1-4]. Наиболее экономически выгодным и экологически безопасным методом борьбы с листовой ржавчиной является возделывание устойчивых сортов. Создание такого рода сортов на первом этапе включает поиск доноров эффективных генов устойчивости к болезни. Большинство из них не эффективны против «современной» популяции листовой ржавчины. Высокоэффективными генами устойчивости взрослых растений в фазе флаг листа в условиях юго-востока Казахстана являются Lr9, Lr19, Lr23, Lr24, Lr26, Lr28, и Lr29 [5-8]. При этом ген Lr19 уже потерял свою эффективность в Поволжье и Волго-Вятском регионе, отмечено появление клонов патогена, вирулентных к гену *Lr*24 в Поволжье, сообщается о потере эффективности гена Lr9 в Западной Сибири и на Урале [5-8].

В этой связи особое внимание должно быть уделено поиску доноров эффективных генов возрастной устойчивости (adult resistance). В генофонде местной селекции сосредоточено большое количество образцов мягкой пшеницы, устойчивых к болезни в фазе флаг-листа. Эти образцы идентифицированы достаточно давно и могут быть восприимчивы из-за изменения расовой структуры популяций *P. triticina* за последние годы. Одним из возможных путей поиска источников возрастной устойчивости рассматривается изучение коллекции местных пшениц.

Данная работа рассматривает возможности выявления разнообразия мягкой пшеницы по эффективной возрастной устойчивости к листовой ржавчине и изучения аллельности их генов с широко используемыми Lr генами изогенных линий сорта *Thatcher*.

Материалы и методы

Объекты исследования: Устойчивые к листовой ржавчине короткостебельные линии генофонда местной селекции СИМ79/279, к-24/20989 и 13 тестерных изогенных линий (Lr1, Lr9, Lr10, Lr9, Lr19, Lr 24, Lr26, Lr28, Lr29, Lr34, Lr35, Lr37, Lr39, Lr50) сорта Thatcher и гибриды F_1 и F_2 .

Методы исследования: гибридологический, генетический и статистический анализ [9]. Устойчивость растений к листовой ржавчине оценивали по международной шкале Майнса и Джексона [10].

Результаты и их обсуждение

Тест на аллелизм генов устойчивости к листовой ржавчине доноров мировой коллекции. При генетическом анализе устойчивости к листовой ржавчине растений у гибридов F₁, полученных от скрещивания СИМ79/279 и к-24/20989 с 13 (Lr9, Lr10, Lr19, Lr24, Lr26, Lr28, Lr29, Lr34, Lr35, Lr37, Lr39, Lr50) изогенными линиями сорта Thatcher, все растения оказались устойчивыми к листовой ржавчине. В ходе оценки материала удалось обнаружить реакцию сверхчувствительности типа «0», «1» и изредко «2» балла, что позволяет, говорит о доминантном характере наследования изучаемого признака.

В результате анализа популяции гибридов F, (таблица 1), полученных от самоопыления гибридов F₁, все растения расщеплялись на устойчивые и восприимчивые растения, соответствующие ди- и моногенному наследованию. Исключение составили гибриды, полученные от скрещивания изогенных линий Lr1, Lr10, Lr26, Lr28, Lr29, Lr34, Lr39, Lr50 с короткостебельными образцами СИМ79/279, где отсутствовало расщепление на устойчивые и восприимчивые растения. У гибридов F2, полученные с тестерными линиями Lr9 (98:35), Lr19, (102:32) и Lr24 (130:3) расшепление по устойчивым и восприимчивым растениям имели моно- и, дигенный характер наследования, соответствующее эпистатическому и полимерному взаимодействию генов соответственно. Отсюда можно заключить, что гены устойчивости к листовой ржавчине короткостебельной линии СИМ79/279 аллельны высокоэффективным тестерным генам Lr1, Lr10, Lr26, Lr28, Lr29, Lr34, Lr35, Lr39,

В результате анализа популяции гибридов F_2 , полученных от самоопыления гибридов F_1 (13 изогенных линий сорта Thatcher х к-24/20989) все растения так же, как в предыдущем опыте расщеплялись на устойчивые и восприимчивые растения, соответствующие ди — и моногенному наследованию (таблица 7). При этом фактические значения расщепления устойчивых и восприимчивых растений у гибридов с Lr19, Lr24, Lr26, Lr35, Lr37 соответствовали моногенному наследованию и эпистатическому взаимодействию генов, кроме комбинации гибридов, полученных с участием доноров устойчивости: Lr1, Lr9, Lr10, Lr28, Lr29, Lr34, Lr39, Lr50, где отсутствовало расщепление.

Изучение наследования устойчивости к листовой ржавчине линии мировой коллекции СИМ79/279, к-24/2089. Результаты анализа гибридов F_1 , как ди-

сомных, так и моносомных комбинаций скрещивания, показали доминантный характер наследования устойчивости взрослых растений.

Таблица 1 – Реакция родительских сортов и гибридов F, на поражения листовой ржавчиной

Наименование сортов,	Кол-во изученных рас-	Соотношение	е фенотипов
линий и гибридов	тений	R	S
Каз. 126	75	0	75
Линия СИМ79/279	75	75	0
Каз.126 x СИМ79/279	66	66	0
F ₁ моно Каз. 126 (1А-7D) х СИМ79/279	78	78	0
Линия к-24/20989	75	75	0
Каз.126 x к-24/20989	62	62	0
F ₁ моно Каз. 126 (1А-7D) х к-24/20989	55	55	0

Как видно из данных таблицы 1, все гибриды F_1 оказались устойчивыми к листовой ржавчине, что свидетельствует о доминантном характере наследования изучаемого признака.

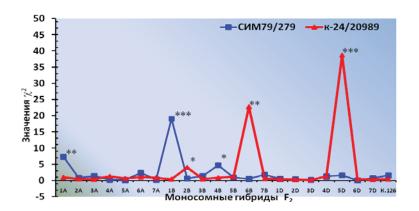
Хромосомная локализация генов устойчивости СИМ79/279 и к-24/20989. Изучение потомства гибридов F2 эуплоидной комбинации от скрещивания сорта Казахстанская 126 с образцами линии СИМ79/279 и к-24/20989 соотношение устойчивых – R и восприимчивых – S фенотипов соответствовало эпистатическому и комплементарному взаимодействию неаллельных генов соответственно. При этом значение с $\chi = 1,56$ и $\chi = 0,39$ у эуплоидных комбинаций не превышало стандартного значения его безошибочного прогноза (таблица 2, 3).

Высокое отклонение значений $\chi 2$ от теоретически ожидаемого значения 13:3 в популяциях по хромосомам 1В ($\chi 2=19,08^{***}$), 1А ($\chi 2=7,32^{**}$) у линии СИМ79/279 и 6В ($\chi 2=22,74^{***}$), 5D ($\chi 2=38,68^{***}$) у линии к-24/20989 позволило их считать критическими хромосомами в определении их устойчивости к листовой ржавчине.

Гибриды по хромосомам 4В (χ 2=4,75*) СИМ79/279 и 2В (χ 2=4,05*) к-24/20989 также дали достоверные отклонения по сравнению с контрольными и другими моносомными гибридами. По-видимому, эти хромосомы несут гены модификаторы, повышающие устойчивость основных генов, локализованных в хромосомах 1В, 1А СИМ79/279 и 6В, 5D к-24/20989, соответственно.

Таблица 2 – Хромосомная локализация генов устойчивости к листовой ржавчине у гибридов F2, полученных с участием СИМ79/279

Гибриды F ₂ по определенным хро-	Соотношен	ие фенотипов	2wayayya a
мосомам	R	S	Значения с
Моно1A x СИМ79/279	180	23	7,32**
4A	126	32	0,23
5A	141	30	0,16
1B	177	12	19,08***
2B	130	35	0,66
4B	172	25	4,75*
1D	112	22	0,48
2D	129	26	0,39
3D	156	33	0,21
Каз.126 x СИМ79/279	234	44	1,56
Примечание – с			


Таблица 3 – Хромосомная локализация генов	в устойчивости к листов	ой ржавчине у гибридов F_2 , полученных с
участием к-24/20989		-

Гибриды F_2 по определенным хромосомам	Соотношение фенотипов		2
	R	S	Значения с
Моно1А х к-24/20989	122	83	0,89
2A	139	98	0,55
3A	95	67	0,38
1B	116	82	0,44
2B	129	75	4,05*
6B	171	68	22,74***
1D	119	85	0,36
2D	85	61	0,23
5D	144	38	38,68***
Каз.126 x к-24/20989	118	84	0,39

Устойчивость к листовой ржавчине остальных 17 комбинаций моносомных гибридов как у СИМ79/279, так и у к-24/20989 соответствовала эпистатическому и комплементарному взаимодействию генов, согласно контрольным вариантам изучаемых линий. Эти данные хорошо видны на рисунке 1.

Таким образом, гены устойчивоти к листовой ржавчине образцов мировой коллекции

СИМ79/279 и к-24/20989 оказались аллельны генам тестерных изогенных линий: Lr1, Lr10, Lr26, Lr28, Lr29, Lr34, Lr35, Lr39, Lr50 и Lr1, Lr9, Lr10, Lr28, Lr29, Lr34, Lr39, Lr50 соответственно. Гены устойчивости образца СИМ79/279 и к-24/20989 наследуются доминантно и локализованы в хромосомах 1A (χ 2=7,32**), 1B (χ 2=19,08***) и 6B (χ 2=22,74***), 5D (χ 2=38,68***) соответственно.

Рисунок 1 — Моносомный анализ устойчивости к листовой ржавчине гибридов F_2 , полученных от скрещивания моно Казахстанская 126 с номерами мировой коллекции СИМ79/279 и к-24/20989

Заключение

Изучение контрольных популяций гибридов F2, полученных от скрещивания сорта Казахстанская 126 х СИМ79/279 и к-24/20989 пока-

зали, что их устойчивость к листовой ржавчине наследуются по типу эпистаза и комплементарного взаимодейстия генов. Основные гены высокой устойчивости к листовой ржавчине линии СИМ79/279 и к-24/20989 локализованы

в хромосомах 1В, 1А и 6В, 5D соответственно. Слабое отклонение, обнаруженное в хромосоме 4В и 2В, по-видимому, связана с действием генов модификаторов.

В результате анализа популяции гибридов F2, полученных от самоопыления гибридов F1 все растения расщеплялись на устойчивые и восприимчивые, соответствующие ди- и моногенному наследованию, кроме гибридов, полученных от скрещивания изогенных линий *Lr1*, *Lr10*, *Lr26*, *Lr28*, *Lr29*, *Lr34*, *Lr39*, *Lr50* с короткостебельным образцом СИМ79/279 и *Lr1*, *Lr9*, *Lr10*, *Lr28*, *Lr29*, *Lr34*, *Lr39*, *Lr50* с к-24/20989.

Гены устойчивости к листовой ржавчине короткостебельной линии СИМ79/279 аллельны высокоэффективным тестерным генам LrI,

Lr10, Lr26, Lr28, Lr29, Lr34, Lr39, Lr50, а линии к-24/20989 Lr1, Lr9, Lr10, Lr28, Lr29, Lr34, Lr39, Lr50. При этом фактические значения расщепления устойчивых и восприимчивых растений у этих гибридов соответствовало к комплементарному и эпистатическому взаимодействию генов, кроме комбинации Lr9 х СИМ79/279 и Lr26 х к-24/20989, где значения хи-квадрат (χ2) соответствовало моногенному наследованию признака.

Полученные данные с использованием методов тестирования и моносомного анализа согласуются с результатами исследования по молекулярному анализу выше приведенных образцов линии пшеницы. Эти данные будут опубликованы в следующей статье.

Литература

- 1 Rsaliev Sh.S., Tileubayeva Zh.S., Rsaliev A.S., Agabayeva A.Ch. The selection of varieties of cereals among foreign breeding material (methodological approaches) // International scientific-practical conference dedicated to the 90th anniversary of JT Dzhiembaeva "Modern problems of plant protection and quarantine". Almaty: Aleiron, 2005. P.255-261.
- 2 Rsaliev Sh.S., Rsaliev A.S. Differentiation of stem rust pathotypes in Kazakhstan // Abstracts of posters, «The Second Central Asian Conference on crops», 13-16 June 2006, city Cholpan-Ata, Issyk kul. Bishkek, 2006. P.139-140.
- 3 Rsaliev A.S., Rsaliev Sh.S., Sarbayev A.T. Resistance to rust in wheat cultivars adapted and introduced smut. Izdenister, natijeler. Almaty: Agrouniversitet. 2008. №1. P.75-80.
- 4 Koishybaev M. Seasonal and long-term dynamics of brown rust in northern Kazakhstan. The results and the prospect of spring wheat breeding for resistance to biotic and abiotic environmental factors. Shortandy. 2001. P. 75-84.
- 5 Tyryshkin L.G., Zyev E.V., Kurbanova P.M., Kolesova M.A. // Quarantine and protection of plants. 2008. №6. P.39.
- 6 Tyryshkin L.G., Kolesova M.A., Kurbanova P.M., Kurkyev K.U., Sarukhanov I.G. Genotypedepending induction stability cereal leaf rust under the influence of the benzimidazole // Vestnik RASHN. − 2008. − №6. − P.61-63.
- 7 Tyryshkin L.G., Kurbanova P.M., Mironenko N.V. Research of gene expression of adult plant leaf rust in wheat germ // Mikologiya I fitopotologiya. − 2009a. − T.43. − № 1. −P.75-80.
- 8 Mihailova L.A., Gultayeva E.I., Mironenko N.V. Methods of researches structure of populations causative agent of leaf rust of wheat Puccinia recondita Rob. ex Desm. f. sp. tritici. SPB.: RASHN, VNIIZR. 2000. P. 114-119.
- 9 Dospehov B.A. Metodika polevogo opyta. M.: Kolos, 1979. s.415.
- 10 Mains E. B., Jackson H. S. Physiologic specialization leaf rust of wheat p. triticina Erikss // Phytopathology. 1926. №16. P. 89 120.