Оценка генетического разнообразия сортов твердой пшеницы (Triticum durum Desf.) с использованием микросателлитных маркеров

Авторы

  • Sh. Anuarbek Институт биологии и биотехнологии растений, Казахстан, г. Алматы
  • S. Abugalieva Институт биологии и биотехнологии растений, Казахстан, г. Алматы
  • Ye. Тuruspekov Институт биологии и биотехнологии растений, Казахстан, г. Алматы

DOI:

https://doi.org/10.26577/eb-2018-1-1318

Аннотация

Твердая пшеница (Triticum durum Desf.) является важной культурой как в мире, так и в Казахстане. Используется как ценное сырье в макаронном производстве. Эффективные селекционные стратегии требуют наличия знаний по уровню генетического разнообразия сортов. Полиморфизм двадцати девяти сортов твердой пшеницы изучен с использованием 7 полиморфных микросателлитных (SSR-) маркеров. Для семи вовлеченных в анализ SSR-маркеров всего идентифицировано 20 аллелей, со средним эффективным количеством аллелей, равным 2,8 аллеля на локус. Уровень генетического разнообразия оказался сравнительно высоким. Среднее значение индекса информативности маркеров (PIC) составило 0.3658; варьировавшее от 0.1267 у Xgwm219 до 0.5457 у Xgwm247. Расcчитаны индексы генетического разнообразия Шеннона и Нея, равные 0.7174 и 0.4243, соответственно. Определены генетические расстояния между анализированными сортами. В результате был проведен кластерный анализ исследуемых сортов. Результаты исследования позволили оценить уровень генетического полиморфизма в изученных сортах и указывают на то, что использованные маркеры являются информативными. Были отобраны полиморфные маркеры для следующих работ по изучению генетического разнообразия твердой пшеницы мировой коллекции. Полученная информация будет использована в селекционных программах, направленных на повышение урожайности и адаптивности твердой пшеницы.

Ключевые слова: Triticum durum, генетические ресурсы, генетическое разнообразие, микросателлиты, SSR.

Библиографические ссылки

1 Ashe P., Shaterian H., Akhov L., Kulkarni M., Selvaraj G. Contrasting Root and Photosynthesis Traits in a Large-Acreage Canadian Durum Variety and Its Distant Parent of Algerian Origin for Assembling Drought/Heat Tolerance Attributes // Front Chem. – 2017. - Vol. 5, No. 121. doi: 10.3389/fchem.2017.00121.
2 Botstein D., White R.L., Skolnik M., Davis R. Construction of a genetic linkage map in man using restriction fragment length polymorphisms // Am J Hum Genet. – 1980. - Vol. 32, No 3. - P. 314–331.
3 Dellaporta S. L., Wood J., Hicks J. B. A Plant DNA Minipreparation: Version II // Plant Molecular Biology Reporter. – 1983. - Vol. 1, No 4. -P. 19–21.
4 Geng H., Xia Xi., Zhang L., Qu Ya., He Zh. Development of Functional Markers for a Lipoxygenase Gene TaLox-B1 on Chromosome 4BS in Common Wheat // Crop science. – 2011. - Vol. 52, No. 2. - P. 568–576. doi:10.2135/cropsci2011.07.0365.
5 Golabadi M., Arzani A., Mirmohammadi Maibody S.A.M, Sayed Tabatabaei B. E., Mohammadi S. A. Identification of microsatellite markers linked with yield components under drought stress at terminal growth stages in durum wheat // Euphytica. – 2011. - Vol. 177, No 2. – P. 207–221. doi: 10.1007/s10681-010-0242-8.
6 Guyomarc’h H., Sourdille P., Charmet G., Edwards K.J., Bernard M. Characterization of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D genome of bread wheat // Theor Appl Genet. – 2002. - Vol.104. - P. 1164–1172.
7 Henkrar F., El-Haddoury J., Ouabbou H., Nsarellah N., Iraqi D., Bendaou N., Mahabala U.S. Genetic diversity reduction in improved durum wheat cultivars of Morocco as revealed by microsatellite markers // Sci. Agric. – 2016. - Vol.73, No 2. – P. 134–141. doi: 10.1590/0103-9016-2015-0054.
8 Kabbaj H., Sall A.T., Al-Abdallat A., Geleta M., Amri A., Filali-Maltouf A., Belkadi B., Ortiz R., Bassi F.M. Genetic Diversity within a Global Panel of Durum Wheat (Triticum durum) Landraces and Modern Germplasm Reveals the History of Alleles Exchange // Front Plant Sci. – 2017. - Vol. 8, No 1277.
9 Kudriavtsev A.M., Martynov S.P., Brodzhno M., Pukhal'skiĭ V.A. Evaluation of the relevance of using RAPD-analysis for revealing the phylogenic connections between cultivars of durum wheat (T. durum Desf.) // Genetika. – 2003. - Vol. 39, No 9. - P. 1237-46.
10 Kudryavtsev A., Martynov S., Broggio M., Buiatti M. Evaluation of Polymorphism at Microsatellite Loci of Spring Durum Wheat (Triticum durum Desf.) Varieties and the Use of SSR-Based Analysis in Phylogenetic Studies // Russian Journal of Genetics. – 2004. - Vol. 40, No. 10. - P. 1102–1110.
11 Li W., Zhang B., Li R., Chang Xi., Jing R. Favorable Alleles for Stem Water-Soluble Carbohydrates Identified by Association Analysis Contribute to Grain Weight under Drought Stress Conditions in Wheat // PLoS One. – 2015. - Vol. 10, No 3. - P. 1–15. doi: 10.1371/journal.pone.0119438.
12 Maccaferri M., Sanguineti M. C., Donini P., Tuberosa R. Microsatellite analysis reveals a progressive widening of the genetic basis in the elite durum wheat germplasm // Theor Appl Genet. – 2003. - Vol. 107. - P. 783–797. doi: 10.1007/s00122-003-1319-8.
13 Marzario S., Gioia T., Logozzo G., Spagnoletti Zeuli P.L. Evaluation of Triticum durum Desf. germplasm for the improvement of local products // Proceedings of the International Symposium on Genetics and breeding of durum wheat. Options Méditerranéennes. – 2014. - No 110. - P. 571-575.
14 Medini M., Hamza S., Rebai A., Baum M. Analysis of genetic diversity in Tunisian durum wheat cultivars and related wild species by SSR and AFLP markers // Genetic Resources and Crop Evolution. – 2005. - Vol. 52, No 1. - P. 21–31. doi: 10.1007/s10722-005-0225-0.
15 Melloul M., Iraqi D., El Alaoui M., Erba G., Alaoui S., Ibriz M., Elfahime E. Identification of Differentially Expressed Genes by cDNA-AFLP Technique in Response to Drought Stress in Triticum durum // Food Technol Biotechnol. – 2014. - Vol. 52, No 4. - P. 479-788. doi: 10.17113/ftb.52.04.14.3701.
16 Mohler V., Bauer C., Schweizer G., Kemp H., Hart L. Pm50: a new powdery mildew resistance gene in common wheat derived from cultivated emmer // J Appl Genet. – 2013. - Vol. 54, No 3. - P. 259–63. doi: 10.1007/s13353-013-0158-9.
17 Pasqualone A., Lotti C., Blanco A. Identification of durum wheat cultivars and monovarietal semolinas by analysis of DNA microsatellites // Eur Food Res Technol. – 1999. - Vol. 210, No 2. - P. 144–147. doi: 10.1007/s002170050551.
18 Qureshi N., Bariana H., Kumran V.V., Muruga S., Forrest K.L., Hayden M.J., Bansal U. A new leaf rust resistance gene Lr79 mapped in chromosome 3BL from the durum wheat landrace Aus26582 // Theor Appl Genet. – 2018. doi: 10.1007/s00122-018-3060-3.
19 Roder M.S., Korzun V., Wendehake K., Plaschke J., Tixier M.H., Leroy P., Ganal M.W. Microsatellite Map of Wheat // Genetics. – 1998. - Vol. 149, No 4. - P. 2007–2023.
20 Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees // Mol Biol Evol. – 1987. - Vol. 4, No 4. - P. 406-25. doi: 10.1093/oxfordjournals.molbev.a040454.
21 Sukumaran S., Reynolds M.P., Sansaloni C. Genome-Wide Association Analyses Identify QTL Hotspots for Yield and Component Traits in Durum Wheat Grown under Yield Potential, Drought, and Heat Stress Environments // Front. Plant Sci. – 2018. - Vol. 9, No 81.
22 Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0 // Mol Biol Evol. – 2013. - Vol. 30, No 12. - P. 2725–2729.
23 Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers // Nucleic Acids Res. – 1989. - Vol. 17, No 16. - P. 6463–6471.
24 Tester M., Langridge P. Breeding Technologies to Increase Crop Production in a Changing World // Science. – 2010. - Vol. 327, No 5967. - P. 818-822. doi: 10.1126/science.1183700.
25 Vieira M.L.C., Santini L., Diniz A.L., Munhoz C. Microsatellite markers: what they mean and why they are so useful // Genetics and Molecular Biology. – 2016. - Vol. 39, No 3. - P. 312-328. doi: http://dx.doi.org/10.1590/1678-4685-GMB-2016-0027.
26 Yeh F.C., Yang R.C., Boyle T.B.J., Ye Z.H., Mao J.X. POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Center, University of Alberta, Edmonton, Alberta, Canada. – 1997.
27 Yildirim A., Sönmezoğlu Öz., Gökmen S., Kandemir N., Aydin N. Determination of genetic diversity among Turkish durum wheat landraces by microsatellites // African Journal of Biotechnology. – 2011. - Vol. 10, No 19. - P. 3915-3920. doi: 10.5897/AJB10.2240.
28 Zaïm M., El Hassouni Kh., Gamba F., Filali-Maltouf A., Belkadi B., Sourour A., Amri A., Nachit M., Taghouti M., Bassi F.M. Wide crosses of durum wheat (Triticum durum Desf.) reveal good disease resistance, yield stability, and industrial quality across Mediterranean sites // Field Crops Research. – 2017. - Vol. 214. - P. 219-227.
29 Zhang B., Shi W., Li W., Chang Xi., Jing R. Efficacy of pyramiding elite alleles for dynamic development of plant height in common wheat // Mol Breeding. – 2013. -Vol. 32. - P. 327–338. doi: 10.1007/s11032-013-9873-5.
30 Абугалиева С.И., Волкова Л.А., Ермекбаев К.А., Туруспеков Е.К. Генотипирование коммерческих сортов яровой мягкой пшеницы Казахстана с использованием микросателлитных ДНК-маркеров // Биотехнология. Теория и практика. – 2012. - № 2. - C. 35-45. doi: 10.11134/btp.2.2012.4.


References

1. Abugalieva S., Volkova L., Yermekbayev K., Turuspekov Ye. (2012) Genotipirovaniye kommercheskikh sortov yarovoy myagkoy pshenitsy Kazakhstana s ispol'zovaniyem mikrosatellitnykh DNK-markerov [Genotyping of commercial spring wheat cultivars from Kazakhstan based on use of DNA microsatellite markers]. Biotekhnologiya. Teoriya i praktika. (Biotechnology. Theory and Practice), no 2, pp. 35–45. doi: 10.11134/btp.2.2012.4.
2. Ahmet Y., Sönmezoğlu Öz., Gökmen S., Kandemir N., Aydin N. (2011) Determination of genetic diversity among Turkish durum wheat landraces by microsatellites. African Journal of Biotechnology, vol. 10, no 19, pp. 3915-3920, doi: 10.5897/AJB10.2240.
3. Ashe P., Shaterian H., Akhov L., Kulkarni M., Selvaraj G. (2017) Contrasting Root and Photosynthesis Traits in a Large-Acreage Canadian Durum Variety and Its Distant Parent of Algerian Origin for Assembling Drought/Heat Tolerance Attributes. Front Chem., vol. 5, no 121, doi: 10.3389/fchem.2017.00121.
4. Botstein D., White R.L., Skolnik M., Davis R.W. (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet., vol. 32, no 3, pp. 314–331.
5. Dellaporta S. L., Wood J., Hicks J.B. (1983) A Plant DNA Minipreparation: Version II. Plant Molecular Biology Reporter, vol. 1, no 4, pp. 19–21.
6. Geng H., Xia Xi., Zhang L., Qu Y., He Zh. (2011) Development of Functional Markers for a Lipoxygenase Gene TaLox-B1 on Chromosome 4BS in Common Wheat. Crop science, vol. 52, no. 2, pp. 568–576, doi:10.2135/cropsci2011.07.0365.
7. Golabadi M., Arzani A., Mirmohammadi Maibody S. A. M, Sayed Tabatabaei B. E., Mohammadi S. (2011) A. Identification of microsatellite markers linked with yield components under drought stress at terminal growth stages in durum wheat. Euphytica, vol. 177, no 2, pp 207–221, doi: 10.1007/s10681-010-0242-8.
8. Guyomarc’h H., Sourdille P., Charmet G., Edwards K.J., Bernard M. (2002) Characterization of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D genome of bread wheat. Theor Appl Genet, vol.104, pp. 1164–1172.
9. Henkrar F., El-Haddoury J., Ouabbou H., Nsarellah N., Iraqi D., Bendaou N., Mahabala U.S. (2016) Genetic diversity reduction in improved durum wheat cultivars of Morocco as revealed by microsatellite markers. Sci. Agric., vol.73, no 2, pp.134–141, doi: 10.1590/0103-9016-2015-0054.
10. Kabbaj H., Sall A. T., Al-Abdallat A., Geleta M., Amri A., Filali-Maltouf A., Belkadi B., Ortiz R., Bassi F. M. (2017) Genetic Diversity within a Global Panel of Durum Wheat (Triticum durum) Landraces and Modern Germplasm Reveals the History of Alleles Exchange. Front Plant Sci., vol. 8, article 1277.
11. Kudriavtsev A.M., Martynov S.P., Brodzhno M., Pukhal'skiĭ V.A. (2003) Evaluation of the relevance of using RAPD-analysis for revealing the phylogenic connections between cultivars of durum wheat (T. durum Desf.). Genetika, vol. 39, no 9, pp. 1237-46.
12. Kudryavtsev A.M., Martynov S.P., Broggio M., Buiatti M. (2004) Evaluation of Polymorphism at Microsatellite Loci of Spring Durum Wheat (Triticum durum Desf.) Varieties and the Use of SSR-Based Analysis in Phylogenetic Studies. Russian Journal of Genetics, vol. 40, no. 10, pp. 1102–1110.
13. Li W., Zhang B., Li R., Chang Xi., Jing R. (2015) Favorable Alleles for Stem Water-Soluble Carbohydrates Identified by Association Analysis Contribute to Grain Weight under Drought Stress Conditions in Wheat. PLoS One, vol. 10, no 3, pp. 1–15. doi: 10.1371/journal.pone.0119438.
14. Maccaferri M., Sanguineti M. C., Donini P., Tuberosa R. (2003) Microsatellite analysis reveals a progressive widening of the genetic basis in the elite durum wheat germplasm. Theor Appl Genet., vol. 107, pp. 783–797, doi: 10.1007/s00122-003-1319-8.
15. Marzario S., Gioia T., Logozzo G., Spagnoletti Zeuli P.L. (2014) Evaluation of Triticum durum Desf. germplasm for the improvement of local products. Proceedings of the International Symposium on Genetics and breeding of durum wheat. Options Méditerranéennes., no 110., pp. 571-575.
16. Medini M., Hamza S., Rebai A., Baum M. (2005) Analysis of genetic diversity in Tunisian durum wheat cultivars and related wild species by SSR and AFLP markers. Genetic Resources and Crop Evolution, vol. 52, no 1, pp. 21–31, doi: 10.1007/s10722-005-0225-0.
17. Melloul M., Iraqi D., El Alaoui M., Erba G., Alaoui S., Ibriz M., Elfahime E. (2014) Identification of Differentially Expressed Genes by cDNA-AFLP Technique in Response to Drought Stress in Triticum durum. Food Technol Biotechnol., vol. 52, no 4, pp.479-788, doi: 10.17113/ftb.52.04.14.3701.
18. Mohler V., Bauer C., Schweizer G., Kemp H., Hart L. (2013) Pm50: a new powdery mildew resistance gene in common wheat derived from cultivated emmer. J Appl Genet., vol. 54, no 3, pp. 259–63, doi: 10.1007/s13353-013-0158-9.
19. Pasqualone A., Lotti C., Blanco A. (1999) Identification of durum wheat cultivars and monovarietal semolinas by analysis of DNA microsatellites. Eur Food Res Technol., vol. 210, no 2, pp. 144–147, doi: 10.1007/s002170050551.
20. Qureshi N., Bariana H., Kumran V.V., Muruga S., Forrest K.L., Hayden M.J., Bansal U. (2018) A new leaf rust resistance gene Lr79 mapped in chromosome 3BL from the durum wheat landrace Aus26582. Theor Appl Genet., doi: 10.1007/s00122-018-3060-3.
21. Roder M.S., Korzun V., Wendehake K., Plaschke J., Tixier M.H., Leroy P., Ganal M.W. (1998) Microsatellite Map of Wheat. Genetics, vol. 149, no 4, pp. 2007–2023.
22. Saitou N., Nei M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol., vol. 4, no 4. pp. 406-25, doi: 10.1093/oxfordjournals.molbev.a040454.
23. Sukumaran S., Reynolds M.P., Sansaloni C. (2018) Genome-Wide Association Analyses Identify QTL Hotspots for Yield and Component Traits in Durum Wheat Grown under Yield Potential, Drought, and Heat Stress Environments. Front. Plant Sci., vol. 9, no 81.
24. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol., vol. 30, no 12, pp. 2725–2729.
25. Tautz D. (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res., vol. 17, no 16, pp. 6463–6471.
26. Tester M., Langridge P. (2010) Breeding Technologies to Increase Crop Production in a Changing World. Science, vol. 327, no 5967, pp. 818-822, doi: 10.1126/science.1183700.
27. Vieira M.L.C., Santini L., Diniz A.L., Munhoz C. (2016) Microsatellite markers: what they mean and why they are so useful. Genetics and Molecular Biology, vol. 39, no 3, pp. 312-328, doi: http://dx.doi.org/10.1590/1678-4685-GMB-2016-0027.
28. Yeh F.C., Yang R.C., Boyle T.B.J., Ye Z.H., Mao J.X. (1997) POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Center, University of Alberta, Edmonton, Alberta, Canada.
29. Zaïm M., El Hassouni Kh., Gamba F., Filali-Maltouf A., Belkadi B., Sourour A., Amri A., Nachit M., Taghouti M., Bassi F.M. (2017) Wide crosses of durum wheat (Triticum durum Desf.) reveal good disease resistance, yield stability, and industrial quality across Mediterranean sites. Field Crops Research, vol. 214, pp. 219-227.
30. Zhang B., Shi W., Li W., Chang Xi., Jing R. (2013) Efficacy of pyramiding elite alleles for dynamic development of plant height in common wheat. Mol Breeding, vol. 32, pp. 327–338, doi: 10.1007/s11032-013-9873-5.

Загрузки

Опубликован

2018-07-14

Выпуск

Раздел

МОЛЕКУЛЯРНАЯ БИОЛОГИЯ И ГЕНЕТИКА